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AN APPROACH TO HOMOGENIZATION OF PARTICULATE COMPOSITE MATERIALS is pro-
posed. The mean-field assumption for averaging over phases is combined with numer-
ical calculations of strain-concentration tensors, thus making it independent from the
analytical Eshelby solution for ellipsoidal inclusions. The fast multipole boundary
element method (FMBEM) is applied to 3-D elasticity and two-phase composites.
As opposed to the finite element method (FEM), this method allows for easy model-
ing of large structures without the need to discretize volumes. Single-inhomogeneity
problems are solved, and the calculated strain concentration tensors are used in the
averaging formula under the assumption of the Mori—-Tanaka approach. An interpola-
tive scheme involving the inverse Mori—Tanaka assumption, known from the litera-
ture, is also applied to increase the accuracy of the approximation for higher volume
fractions of particles. Examples include composites with spherical and cubic parti-
cles, and hybrid materials with auxetic components. The results are consistent with
analytical solutions and RVE/FEM models.
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1. Introduction

MEAN-FIELD HOMOGENIZATION IS A GROUP OF METHODS for determining the
effective properties of inhomogeneous materials. It includes the Mori—Tanaka
method that involves the analytical Eshelby solution for the ellipsoidal inclusion
problem in linear elasticity |1H9]. The approach can model such shapes of inho-
mogeneities as short or long fibers, platelets, spheres, or spheroids. Although the
Mori—Tanaka approach does not take into account the direct interaction between
inhomogeneities, it is still considered efficient due to its low computational cost.

The scope of applications of analytical mean-field approaches can be ex-
tended by incorporating numerical methods to calculate the strain contribution
of a single inhomogeneity. For example, in [10], 3-D finite element models of
polymer composites reinforced with wavy nanotubes were analyzed to compute
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the numerical strain concentration tensor of the reinforcement. The tensor was
combined with the Mori-Tanaka approach to achieve the effective elastic moduli
of the composite. The paper |11] considers the mean-field (Mori-Tanaka) homo-
genization approach coupled with the finite element method (FEM) for 3-D prob-
lems with elastoplastic matrix and ellipsoidal inhomogeneities. The FEM models
were used to compute average strains over inhomogeneity in the equivalent inclu-
sion problem. Macroscopic stress-strain relations of the composites were deter-
mined. In the work [12], the FEM was applied to 3-D models with single inclusion
with various shapes: prolate spheroidal, oblate spheroidal, cylindrical, triangular
prism, rectangular prism and irregular prism. The strain concentration tensor
calculated numerically was applied to determine the effective properties of com-
posites with aligned and randomly oriented inhomogeneities. The Mori—Tanaka
approach combined with the FEM was applied in [13] to establish an incremental
method for the analysis of 3-D elastoplastic composites. In |14], 3-D FEM mod-
els of single-inclusion problems with spherical and cubic particles were analysed
and used to calculate effective elastic constants of composites within the linear
elastic regime, and stress-strain relationships for inelastic composites. The work
was continued in |15 to establish a two-stage homogenization method involving
the pseudograin discretization method. The properties of inelastic short-fiber
reinforced composites were analyzed. Recently, the approach has been applied
to construct a data-driven time-efficient model to homogenize nonlinear short
fiber composites [16|. Another efficient analytical-numerical approach to model
composites with arbitrary shapes of inhomogeneities is the calculation of com-
pliance or stiffness contribution tensors, which relate uniform stress or strain
boundary conditions to extra strains or stresses caused by a single inhomogene-
ity. The change in overall compliance or stiffness of the composite depends on
the contribution tensors and the volume fraction of the inhomogeneities [17].
The approach was coupled with the FEM [18] and a meshless method [19] and
applied to 2D and 3D composites.

The combination of the above approaches with the FEM requires a numerical
solution of the single-inhomogeneity problem, i.e., a solid body or prism (usually
a cube) containing a single inhomogeneity. As the model approximates an infinite
medium with single inhomogeneity for the dilute strain concentration tensor, the
inhomogeneity must be small enough compared to the whole model to diminish
the effect of the external boundary. Thus, in the FEM, the coarse mesh on the
external boundary of the model must be connected with the fine mesh of the in-
homogeneity. This results in the excessive size of the discretized problem even
for a simple geometry of the inhomogeneity. Therefore, a possible method for
the reduction of the problem and simplification of the pre- and post-processing
stages at once is the boundary element method (BEM). In the literature, papers
containing results of self-consistent and Mori—Tanaka approaches combined with
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the BEM for 2-D piezoelectric materials with elliptic voids [20] and circular in-
homogeneities [21| are available. Similarly, papers |22} 23| and monograph [24]
contain results of the Mori—Tanaka approach applications for 2-D piezoelectric
composites with circular inhomogeneities. To the best of our knowledge, there are
no other publications available in the literature concerning the coupling of the
BEM with the mean-field homogenization approach for different types of nonho-
mogeneous materials. The advantageous feature of the BEM of discretizing only
the boundary is more relevant for 3-D problems than for 2-D ones. This fact
was the motivation for further investigation of this topic.

The present contribution aims to combine the fast multipole boundary ele-
ment method (FMBEM) [25], for 3-D linear elasticity with the formulation for
inhomogeneities and mean-field homogenization approach. For the considered
class of problems, the method requires only the discretization of the boundary.
The FMBEM is placed among novel versions of the BEM, that has a computa-
tional complexity of type O(N) or O(N log N), as opposed to the conventional
BEM with at least O(N?) complexity, where N stands for the number of degrees
of freedom of the discretized structure. The new approach is applied to compos-
ites reinforced with particles. The mean-field formulations include the Mori—
Tanaka approach and the interpolative scheme with the inverse Mori—-Tanaka
method |26]. The considered materials include composites with spherical parti-
cles, for which analytical solutions are available and applied here to the validation
of the proposed approach, composites with randomly distributed and oriented
cubic particles (validated with literature results obtained by the mean-field/FEM
approach and full FEM models of representative volume elements, RVEs) and
hybrid materials with aligned auxetic subregions (also validated by RVE/FEM
models). The last case illustrates how the space of elastic properties of new
materials can be efficiently explored for their optimal stiffness. According to
the literature, the effective Young modulus has a local minimum for a certain
value of the volume fraction of the auxetic phase |27, |28]. The whole investiga-
tion illustrates the capability of the mean-field/FMBEM approach to minimize
the number of the boundary value problems to be solved for the inhomogeneity
strain concentration tensor, minimize the size and solution time of the discretized
boundary value problems compared to RVE/FEM models, and make the pre-
processing stage extremely easy and robust.

The paper is organized as follows: the second section introduces the mean-
field approach coupled with the numerical calculation of the inhomogeneity strain
concentration tensor. Section 3 contains a description of the basic equations ap-
plied and solved in the boundary element method. It also contains the most
important information on the fast multipole BEM (FMBEM). Section 4 con-
tains three numerical examples. The first example concerns composite materials
with spherical particles. The second example is a composite material reinforced
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with randomly distributed and oriented cubic particles. The third example illus-
trates the exploration of the space of elastic properties for a new hybrid material.
Furthermore, Section 4 compares averaged strains in phases of selected materials
computed by different methods. The last section contains conclusions. The pa-
per is supplemented with Appendix with the Mori-Tanaka mean-field/FMBEM
predictions of elastic moduli of the hybrid materials that were less accurate than
the interpolative scheme.

2. Hybrid mean-field /numerical homogenization

Consider an analysis of a structure in the macro scale. For a given point,
the macro strain € is known and macro stresses ¢ are to be found, or the op-
posite situation is considered. For linear elasticity, the macro strain and stress
are related by the overall macro stiffness tensor C (bold italic symbols denote
the 4th-order tensors):

(21) 6=C:¢& or 05 = Oijklgkl-

At the micro-level, the point corresponds to a representative volume element
(RVE) with the domain 2. The macro strain and stresses correspond to respec-
tive quantities, averaged over €):

22 ©=e (o)=o. =y [
Q

where V' is the RVE volume. For a two-phase composite, the average can be
expressed by using averages over constituents: matrix €2y and inhomogeneity €21,
and their volume fractions cg, c1:

(2.3) {(f) =co(flg, +e1{ha, =@ =c)(fg, + e lfg,-

On the RVE boundary, linear displacement boundary conditions are imposed,
corresponding to €. Strain averages in phases are related to the macro strain by
strain concentration tensors, the local one B (e.g. |7, §]):

(2.4) <€>Q1 — .B . <€>QO’
and the global one A:
(2.5) (€)g,=A:e, A=B:[1—c)I+caB]",

where I is the fourth-order identity tensor. The macro stiffness tensor is then
expressed as:

(2.6) C=C,+ a(Ci—Ch): A
=Cy+ Cl(Cl — C(]) : B [(1 — Cl)I + ClB]_l.
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Fic. 1. The single-inhomogeneity problem: a) geometry, b) typical FEM model analysed
in the literature (one eight of the model with symmetry conditions on appropriate
external faces) .

For the Mori—Tanaka assumption, the strain concentration tensor comes from
the solution of the single-inhomogeneity problem. The original Mori-Tanaka
model employs the Eshelby solution to compute the strain concentration ten-
sor. Thus, such an approach is limited to ellipsoidal inclusions. On the other
hand, to handle non-ellipsoidal shapes, the problem can be solved by using nu-
merical methods, e.g., FEM or BEM, and the strain concentration tensors can be
calculated numerically. A single inhomogeneity with properties Cy is embedded
within a prism Qp with external boundary I'p (Fig. ) The prism has material
properties of the matrix (Cp) and approximates an infinite medium with far-field
(macro) strain imposed on its boundary:

2.7) i, =& xy,
1007 [0o00] [o00] [0oOO 001 010
2.8) e=VI=1]1o000/|,{010]|,]000|,{001],[000],|100

ij
000 000 001 010 100 000

The average strain over the inhomogeneity €21 with the boundary I't (which is
also the matrix-inhomogeneity interface) is calculated by the volume integral
applicable in the case of the FEM (Fig. ):

1
(2.9) <Eij>91 = VI /&?Z’j dQI,
Qr
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with V7 being the volume of the inhomogeneity. Note that for a boundary
method, the natural way for the calculation of average strain is rather calcu-
lation of the surface integral over the inhomogeneity boundary [20-22]:

1
(2.10) <Eij>91 = Q—VI / (uin]‘ + ani) dI'y.
I’y
For the numerical determination of the dilute (local) strain concentration
tensor, one can follow the procedure proposed in [10]. Assume that the matrix is
large enough to appear infinite to the inclusion and there is a linear relationship

between the far-field strain tensor & ;; and the average strain in inclusion (€)q, -
The relationship involves the local strain concentration tensor:

(2.11) (€)g, = B : &%,

It is convenient to present the relationship in the matrix form:

((e11)q, [ Bi1 B2 Big By Bis Big| (€,
(€22)q, Ba1 Bog B3 Bay Bas Bag &,
(2.12) <€33>Ql _ | B31 B3z Bsg By Bss Bsg {23
(€23)q, By1 Bz Baz Byy Bys Bag S
(e13)q, Bs1 Bsa Bss Bsa Bss Bse | | €5
(e12)q, | Be1 Bea Bss Bea Bes Bos | &1,
where columns of the matrix By, (i,p = 1,2,...,6) are calculated by averaging

of strains caused by the far-field strain tests I-VI:

(€ila, |er
—

€

(2.13) By = gr e {el=V1},
Thus, in the general case of non-symmetric inhomogeneities, elements of the
dilute strain concentration tensor B and macro stiffness tensor C' are calculated
by performing 6 tests.

For misaligned inhomogeneities, one can reconsider Eq. to express the
effective stiffness by terms that are orientation independent and orientation de-
pendent [29]:

(2.14) C =Cy+{C}.

The orientation dependent part can be calculated by the averaging formula:

2 27 ™

(2.15) {Ciju} = (0,90, ¢)ipajqaproysCpgrs sin(f) dd day dg,
[1]
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with g(6, 1, ¢) being the orientation distribution function equal to 1 for random
orientation and dependent on Euler angles (6,1, ¢) in general case. Functions
a;j can be found, e.g., in [8, 29|. The averaging over orientations assures that
the computed effective elastic stiffness is symmetric.

To improve the mean-field predictions for higher volume fractions of particles,
one can apply the double inclusion model [6] combined with the interpolative
scheme applied in |7, 26| that involves the calculations of two strain concentration
tensors:

e B; = B(Cy,C}) — the tensor of the Mori-Tanaka approach,
e B, = B(C1,Cy)~! — tensor of the inverse Mori-Tanaka model for which
properties of the inclusions and matrix are permuted.

The interpolation model uses the combinantion of these tensors for the double-
inclusion interpolative approach strain concentration tensor:

(2.16) Bp-r={[1 - ((c)]B; ' +((c1) B}

with the interpolation function:

(2.17) C(Cl) = %cl(l—l—cl).

The approach requires the solution of additional six boundary value problems
with permuted properties of the matrix and inhomogeneity for B,,.

3. BEM solution of the single-inhomogeneity problem
3.1. Basic equations of the BEM

Consider a general problem of the homogeneous body ) with the boundary
I', that is made of isotropic material. The boundary integral equation takes the
form [30H33, 36]:

(81 Cy)u(x) + / T (', ) (x)dT(x) = / Uij (¢, %)1t;(x) dT'(x),
I I

where x and x’ denote the collocation and integration point, Cy; (4,7 = 1,2, 3)
is a coefficient depending on the position of the collocation point and shape of
the boundary at x/, T;; and U;; are Kelvin fundamental solutions, u; and t;
denote boundary displacements and traction forces. The fundamental solutions
are defined by:
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1

.. / - @@ - .. . .

(32) Uz (X 7X) 167‘(‘#(1 — I/)’r’ [(3 4V)5Z] + Ty Taj ]a
1

.. / _——

(3.3) T;(x',x) R
or
X {[(1 — 27/)61']' + 3r,; 5 ]7871 — (1 — QV)(’/M‘ ng —7"r; nz)}a

where p is the shear modulus, v — Poisson’s ratio, d;; — the Kronecker symbol,
n; — component of the unit outward vector normal to the boundary, and r; —
component of vector connecting x’ to x.

The boundary of the body and the boundary quantities are discretized by
using boundary elements. In this work, 8-node serendipity elements are applied
(Fig.[2). Shape functions for these elements can be found elsewhere, e.g., in [33].

]’]I
7 3
(~1.1) & (L1)
X3 8 0 )—>6
13
(-1,—1) (1,-1)
X1 X2 1 5 2

(a) (b)

F1G. 2. 3D Serendipity boundary element with 8 nodes: a) in the global coordinate system x;
(i =1,2,3), b) in local coordinate system (£,7) for the numerical integration.

The discretization and application of (3.1]) to all boundary nodes as x’ leads
to the formation of the matrix system of equations:

(3.4) Hu = Gt,

where G and H are matrices dependent on the fundamental solutions, and
u and t are vectors of boundary displacements and traction respectively. By
taking into account boundary conditions and rearranging the system, it takes
the form:

(3.5) Ly = Rz,

where y and z denote vectors of unknown and known boundary quantities, re-
spectively.

The numerical calculation of integrals in , which depend on singular
fundamental solutions, requires the application of regularization techniques and
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adaptive integration methods. We refer the Reader to [32, |33] for the detailed
description of methods that can be applied for the present higher order dis-
cretization scheme.

3.2. Formulation for the single-inhomogeneity problem

In the case of the single-inhomogeneity problem (Fig. ), one can write the
boundary integral equation for both phases separately, i.e., for the prism with
the boundary I'p U T’ |34]:

(3.6) Cij(x")u;(x) + /TiP(x',x)uj(x)dF(x): /Uij(x',x)t}a(x)dl“(x),
TpULy IpUL;

and the inhomogeneity with the boundary I':

(3.7)  Cij(x)uj(x) —|—/TZ-I-(X',X)uj(X) dI'(x) = /Uij(x',x)tﬁ(x) dI'(x).

Iy T'r

Note that respective integrals over I'1 involve actual direction of its outward unit

normal vector which is opposite for the prism and inhomogeneity at given x € I'y.
By taking into account the discretization and boundary conditions of the

single-inhomogeneity problem, one can write the above equations as follows:

- LB )= [N ) ()
Ly Ly, u Ry Ry, t ’
(3.9) H'u' = G'tL.

Vectors t¥ and uP! denote unknown tractions, on the outer boundary I'p of
the prism, and displacements on the interface boundary I't, respectively. Vectors
uP and tP! denote known displacements on I'p and yet unknown tractions on
the interface t"!. Vectors u' and t! denote unknown displacements and tractions
on the boundary of inhomogeneity I'1. Matrices Lg-, Rfj (i,7 = 1,2) depend on
the terms of Eq. built for the prism. Matrices G!, H! are dependent on the
terms of Eq. built for the inhomogeneity.

Traction forces on the inhomogeneity boundary are:
(3.10) tl = (GH e

The perfect bonding between the prism and inhomogeneity is assumed, i.e.,
the conditions of continuity of displacements, and equilibrium of tractions are
satisfied:

(3.11) uT=ul, t"=—tl
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Inserting (3.10) and (3.11]) into (3.8) leads to:

L5, L5, + RE,(GH'H' | | u!

The final equation involve unknown tractions on the external boundary of the
prism tp and displacements on the interface uj. Tractions on the interface can
be recovered (if necessary) in the postprocessing stage by using Eq. (3.10)).

3.3. The fast multipole boundary element method

Matrices in the system of equations are dense and nonsymmetric, and
affect the efficiency of the method for large structures. The complexity of the
conventional BEM is at least O(N?), where N denotes the number of degrees of
freedom of the structure. Efficient versions of the BEM are available including the
fast multipole BEM (FMBEM). The method is known to reduce the complexity
to O(N) or O(N log N) [35, 36].

The FMBEM algorithm uses a hierarchical grouping of boundary elements
and collocation points and efficiently distributes integrals (potentials) over the
groups. The grouping process is represented by a tree structure with the root
at a level that corresponds to the whole domain. Far-field potentials are ap-
proximated by multipole expansions that involve solid harmonic functions [36].
Near-field potentials that correspond to the influence of closely located groups
are calculated directly as in the conventional BEM. Thus, the matrix system of
equations takes the form:

(3.13) L] {y} + {Ly}™ = [R™] {a} + {Ra}"™,

in which [-]"* matrices include the near-field integrals and { -} vectors in-
clude far-field potentials that are calculated by using expansions and transla-
tions. For the single-inhomogeneity problem, the system of equations is
transformed to the form similar to , with potentials split up into near- and
far-type terms. The system of equation is solved iteratively. A single iteration is
composed of the following steps:

e Direct computation of the near-field potentials.
e Computation of multipole moments for the smallest groups.
Multipole-to-multipole translations during the upward pass.
Multipole-to-local translations.
Local-to-local translations during the downward pass.
Computation of the far-field potentials by the local series.

For the inhomogeneity-problem, Eq. is transformed into the form sim-
ilar to and solved iteratively. More details on the present FMBEM and its
applications in micromechanics can be found in |25} 37].
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4. Numerical examples
4.1. Composites with spherical particles

Consider a composite material with a matrix made of epoxy reinforced with
randomly distributed silica spherical particles. Elastic properties of the matrix
are: Young’s modulus Ey = 3.16 GPa and Poisson’s ratio vy = 0.25. Corre-
sponding properties of particles are: Fq4 = 73.1 GPa and v; = 0.18. The same
material was analyzed in . To give an example of an application of the mean-
field/FMBEM approach, a single-inhomogeneity FMBEM model was developed.
To properly approximate an infinite body, the particle volume was set to not
exceed 0.001 of the volume of the homogeneous cubic prism . 16x16 mesh
of 8-node quadratic elements was applied for the discretization of a single wall of
the prism, and 96 elements for the spherical particle (Figs. and ) In the
whole model, the number of elements and nodes was equal to 1632 and 4 900,
respectively. For the M-T/FMBEM scheme , 6 tests were performed accord-
ing to boundary conditions . The strain concentration tensor was calculated
numerically as the surface integral over the particle boundary. For the
interpolative scheme D-I/FMBEM (2.16]), additional 6 tests were performed
for the structure with permuted elastic properties of the matrix and particle.

LV L L O W W W
L O

(a) (b) ()

F1a. 3. Discretized models of the composite: a) interior of the BEM single-inhomogeneity
model, b) boundary element mesh of the particle (mid-side nodes are skipped
in the visualization), ¢) RVE/FEM model, ¢; = 0.45.

Computations were performed on a desktop PC equipped with the AMD
Ryzen 5 2600 Six-Core 3.40 GHz CPU and 24 GB of RAM. The simulations uti-
lized 4 parallel threads. The computation time for the dilute strain concentration
tensor was approximately 3 minutes. It is important to note that the number
of tests can be reduced due to the particle’s symmetry. However, the general
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procedure for arbitrary shapes requires 6 tests, and this research focused on
validating the developed method. Overall, the preprocessing stage of the single
inhomogeneity model and the computations were robust.

The reference numerical model for the composite was the representative vol-
ume element (RVE, |9]) generated and analysed by the Ansys/Material Designer
software. RVEs with volume fraction of particles ¢; € {0.05,0.1,0.15,0.2,0.25,
0.3,0.35,0.389,0.45} (for ¢; = 0.389, the numerical values of the elastic proper-
ties calculated are given in [7] and are used for the comparison). The number of
particles ranges from 16 (for ¢; = 0.05) to 569 (¢; = 0.45). Homogenization tests
with periodic boundary conditions were performed. 10-node tetrahedral elements
with quadratic shape functions were applied to the discretization. The finite el-
ement mesh was generated with default software settings. The software adjusts
the mesh density to the particle size and distance between constituent bound-
aries and edges and assures that the mesh is periodic. The number of elements in
the discretized models ranged from 163 355 to 3426 853, and nodes from 231 192
to 4686 512. A typical FEM/RVE model is shown in Fig. . The total number
of FEM simulations was 54, with the number of degrees of freedom in the dis-
cretized BVP problem N ~ [10°,107]. The FEM computations were parallelized
to 4 threads, similar to the FMBEM. The computation time for a single RVE
(6 homogenization tests) depends on ¢, and ranged from 4 to 94 minutes. The
total FEM computation time was about 3 hours and 20 minutes and was substan-
tially longer than 3 minutes for M-T/FMEBM and 6 minutes for D-I/FMBEM.
Note that the reported time does not include the preprocessing stage (generat-
ing geometry and meshing) which is usually considered significant in the FEM
modelling. For example, the meshing time for the RVE with ¢; = 0.45 was about
5 minutes. The process of saving the amount of data on disk is also relatively
time-consuming.

The FEM software gives the output in the form of engineering constants
(three Young’s moduli, three shear moduli and three Poisson’s ratios) or ele-
ments of the macro stiffness matrix. To eliminate the possible small yet present
effect of the anisotropy of the modelled structures, mean values of correspond-
ing moduli, which should be equal for isotropy, are presented here. Compari-
son of the computed normalized effective Young and shear moduli is shown in
Figs. [4] and [5] respectively. The results are compared with the analytical mod-
els: Mori-Tanaka (‘M-T/analytical’) and self-consistent method in two versions.
These versions assume Voigt (upper bound) or Reuss (lower bound) assumptions
for the comparison medium and provide simple formulas for the approximated
bounds (abbreviated to ‘AB’) for overall constants [38]. We refer to these meth-
ods as ‘AB-Up/analytical’ and ‘AB-Low/analytical’, respectively. The present
mean-field /numerical approaches are referred to as:
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e M-T/FMBEM — the Mori-Tanaka assumption for the original problem
with numerically computed strain concentration tensor,

e D-I/FMBEM - the numerical strain concentration tensor replaced with the
interpolation involving both original and the inverse Mori—Tanaka
problem.

The M-T/FMBEM approach agrees very well with the M-T /analytical re-
sults for both moduli (Figs. |4 and . The results for ¢; = 0.45 agree within

----- M-T/analytical /'
304 —° AB-Up/analytical ,A/’
-==- AB-Low/analytical S A
@ M-T/FMBEM g
4 ‘0'
251 —k- D-I/FMBEM S
B RVE/FEM sm

E*/E,

0.0 0.1 0.2 0.3 0.4 0.5
C1

Fi1a. 4. Normalized effective Young’s modulus of the spherical-particle reinforced composites.

3571 M-T/analytical
— -~ AB-Up/analytical
3.04 ——- AB-Low/analytical

--@®@: M-T/FMBEM
—-Ak- D-l/FMBEM
254 MW RVE/FEM

o
Q
©

2.0

1.5 > g

r.—
-
10{ &
0.0 0.1 0.2 0.3 0.4 0.5

C1

Fic. 5. Normalized effective shear modulus vs. volume fraction of particles
of the spherical-particle reinforced composites.
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the tolerance of 1%. Evidently, the strain concentration tensor is calculated
with high accuracy. As expected, the M-T models underestimate the results
in comparison to the RVE/FEM approach. The D-I/FMBEM is very close to
the AB-Up/analytical result. Thus, the present mean-field/FMBEM approaches
give expected results with minimal computational effort. For ¢; = 0.389, the nu-
merical values are compared to the results from [7] in Table (1| In the paper, the
original notion ‘M-T’ stands for the analytical Mori—Tanaka method and ‘D-I’
for the analytical double-inclusion interpolative scheme . For the M-T and
D-I schemes, the relative difference for both moduli is less than 0.25%. In the
FMBEM analysis, the amount of the discretized model data to be prepared and
processed is much less than for the FEM, as the number of degrees of freedom
is only N ~ 10* (against N ~ [10°,107] for RVE/FEM) for the present exam-
ple. The FEM always requires the discretization of the whole domain (Figs.
and ), which makes the method more demanding from the user point of view.
Furthermore, the BEM offers easier preparation and possible manipulation with
the model as the boundaries of the prism and inhomogeneity are meshed indepen-
dently. The computation time for mean-field/FMBEM was substantially shorter
compared to the FEM (3 or 6 minutes for M-T/FMBEM and D-I/FMBEM,
versus over 3 hours for RVE/FEM).

TaBLE 1. Effective elastic moduli of the epoxy/silica composite for ¢1 = 0.389.

Modulus | M-T |7] | D-I|7] | RVE/FEM | M-T/FMBEM | D-I/FMBEM
E* [GPa] | 6.8194 | 7.7979 |  7.4357 6.8102 7.8180
G* [GPa| | 2.5875 | 2.9828 |  2.8556 2.5924 2.9890

4.2. Composites with randomly distributed and oriented cubic particles

A composite made of an aluminum alloy matrix and cubic silicon carbide par-
ticles was analyzed. For such a problem, one cannot apply analytical methods as
they usually assume ellipsoidal shape of inclusions (inhomogeneities). Particles
of the same size were randomly distributed. The elastic constants for the matrix
are: Fg = 70 GPa, 1y = 0.30, and particles £; = 415 GPa, v; = 0.16. The
corresponding FMBEM single-inhomogeneity model contained single cubic par-
ticle embedded in the cubic prism. The volume of the particle was the fraction
0.001 of the volume of the homogeneous prism. The boundary element mesh for
a single wall of the prism contained 16x16 elements, and of the particle 4x4 el-
ements. The boundary element mesh was composed of 1632 elements and 4 900
nodes. The interior of the discretized model is shown in Fig. [6b, and magnified
particle in Fig. [6b.
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(b)

Fic. 6. Discretized models of the composite: a) interior of the BEM single-inhomogeneity

model, b) boundary element mesh of the particle, ¢) the RVE/FEM model, ¢; = 0.25.

Both schemes were considered, i.e., the Mori-Tanaka scheme (6 tests for the
direct problem) and the interpolative scheme that involves the additional Mori—
Tanaka problem (additional 6 tests). For the calculation of the final effective
elastic properties of the isotropic medium, averaging over orientations ,
was performed. The same composite material was considered in [14] and
analyzed by the hybrid Mori-Tanaka/FEM approach. The strain concentration
tensor was calculated numerically by a model similar to Fig. [I[p. Following the
cited paper, we give the strain concentration tensor in the matrix notation. The
FEM result of is:

(4.1)

and the present FMBEM result:
[0.34540 0.03210 0.03210 0
0

(4.2)

BFEM _

BFMBEM _

[0.34391 0.03273 0.03273
0.03273 0.34391 0.03273
0.03273 0.03273 0.34391

0
0
0

0
0
0

0
0
0

0.03210 0.34540 0.03210
0.03210 0.03210 0.34540 O

0
0
0

0
0
0

0
0
0

0 0 0
0 0 0
0 0 0
0.28037 0 0
0 028037 0
0 0  0.28037 |
0 0
0 0
0 0
0.28137 0O 0
0 028137 0
0 0

0.28137 |

The FMBEM strain concentration matrix agrees with the FEM as the maxi-
mum relative difference between the corresponding nonzero off-diagonal elements
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of the matrix is less than 2%, and for diagonal elements less than 1%. However,
the FEM requires discretization of the entire domain, and a reasonable transition
between coarse mesh on the external boundary and fine mesh for the particle is
required. On the contrary, the boundary element meshes of the corresponding
boundaries for the present FMBEM model are independent of each other and
easy to generate.

Reference models for the effective elastic moduli were RVEs generated in
DIGIMAT software, which allows the user to model composites reinforced with
any shape of particles defined by a separate CAD file. The volume fraction of
the particles ¢; € {0.05,0.1,0.15,0.2,0.25}. Number of particles ranged from
64 to 103. The models were discretized by 10-node tetrahedral finite elements
with quadratic shape functions. The number of elements in models ranged from
1112144 to 1997470, and nodes from 1529075 to 2749291. The discretized
model of the RVE with the highest ¢; is shown in Fig. [6c. For homogenization,
six tests with periodic boundary conditions were applied. Thus, 30 boundary
value problems with significant size N ~ 105, were solved. With the same com-
puter setup as in the previous example and Ansys Material Designer applied
to the analysis, the computation time for a single RVE (6 tests) ranged from
15 to 44 minutes. The total computation time of all RVEs was 147 minutes
(almost 2.5 hours). As a result, the effective bulk (K*) and shear (G*) moduli
of the homogenized material were calculated. The comparison of the results, nor-
malized with corresponding moduli of the matrix material (Ky, Gy), is shown in
Table 2] and Figs. [7] and

TABLE 2. Efective elastic moduli of the composite with randomly oriented cubic particles.

¢ RVE/FEM M-T/FMBEM D-I/FMBEM

K*/Ky | G*/Go | K*/K, | G*/Go | K* /Ko | G*/Go
0.05 | 1.05261 | 1.08379 | 1.05249 | 1.08604 | 1.05297 | 1.08707
0.10 | 1.10488 | 1.17879 | 1.10828 | 1.17861 | 1.11033 | 1.18306
0.15 | 1.16516 | 1.27542 | 1.16768 | 1.27847 | 1.17260 | 1.28931
0.20 | 1.23252 | 1.40272 | 1.23105 | 1.38654 | 1.24033 | 1.40734
0.25 | 1.30740 | 1.52779 | 1.29882 | 1.50385 | 1.31413 | 1.53889

For the effective moduli, both M-T/FMBEM and D-I/FMBEM results
are close to the reference RVE/FEM, and the three-point approximation
(TPA /analytical) with the assumption of stiff hexahedral particles in a de-
formable matrix [39, |40]. The difference between the present two mean-field

approaches increases with the volume fraction ¢; to reach the relative difference
in bulk modulus of 1.2%, and in shear modulus 2.3%, for ¢; = 0.25 (Table [2).



MEAN-FIELD/ FMBEM HOMOGENIZATION. . . 17

140 _ HS-low/analytical <
1.354 TPA/analytical /'/
—— M-T/FMBEM >
1.30 1 === D-I/FMBEM S -
B RVE/FEM 4

1.25 4

o

X 1201

h4
1.15 -
1.10 -
1.05
1.00 -

0.00 0.05 0.10 0.15 0.20 0.25 0.30
C1

Fi1c. 7. Normalized effective bulk modulus of composites with randomly oriented cubic

particles.
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Fi1c. 8. Normalized effective shear modulus of composites with randomly oriented cubic
particles.

All results are above (or close to, for small ¢;) Hashin—Shtrikman lower bounds
(HS/analytical) reported in [40]. Note that the FEM results may be affected by
the number of particles in the RVE and FEM errors (geometry approximation,
discretization, solution of the system of equations and others). Nevertheless, the
FEM convergence study is difficult to perform due to relatively large models
and the requirement of mesh periodicity.
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Both mean-field/FMBEM approaches properly predict the trends of increas-
ing effective elastic constants (Figs. [7| and [8)) while offering minimized compu-
tational effort. Again, 12 discretized BVP problems with N ~ 10 were solved
for two mean-field series of the results for the whole considered range of the
volume fraction of the particles. The time of the computations of a single di-
lute strain concentration tensor was approximately 3 minutes. Accordingly, the
D-I/FMBEM time was about 6 minutes. It is substantially less compared to over
two hours as reported for the FEM /RVE.

4.3. Hybrid materials with auxetic aligned cubic subregions

We consider the design of a hybrid material composed of two phases. Young’s
moduli of both phases are equal: Fy = E; = 1. Poisson’s ratio: vg = 0.45 and
v1 € (—0.9; —0.1) with the step of 0.1. Thus, the phase ‘1’ is auxetic. The auxetic
subregions are aligned, randomly distributed cubes. Although the hybrid is not
a inventional composite material, the model for composites may be applied here
to estimate the effective elastic properties of such a structure. Due to the presence
of the auxetic component, the overall structure behaves in a nonconventional
manner, i.e., it has a local maximum of the effective Young’s modulus expressed
as a function of the volume fraction ¢; |27, [28].

For the geometry of the single-inhomogeneity problem solved by the FMBEM,
exactly the same discretized model as in the previous example was applied
(Fig. @ Again, the boundary element mesh was composed of 1632 elements
and 4900 nodes. Preliminary results showed that the M-T/FMBEM scheme im-
properly predicts the maximum of the Young modulus (see Appendix for the
results). Therefore, the D-I/FMBEM scheme was applied for each value of v,
i.e., two strain concentration tensors were calculated for each case (18 in total,
108 FMBEM simulations). The time of calculation of the single tensor was about
3 minutes. The total time of D-I/FMBEM calculations was about one hour.

For the validation of the results, FEM /RVE models were generated based on
the idea proposed in [27]. Each RVE was a cube composed of aligned smaller
cubes with properties randomly chosen to refer to phase ‘0’ or ‘1’. The RVE
contained 5x5x5 such smaller cubes. The small cube was discretized by 6x6x6
20-node hexahedral elements. The mesh density was determined on the basis of
the study reported in [27]. The model had 27000 elements and 116 281 nodes.
A typical RVE is shown in Fig. [9] Ten random RVEs were generated for each
value of ¢; € (0.1;0.9) with a step 0.1, and additionally for ¢; = 0.95. Peri-
odic boundary conditions with six standard homogenization tests were applied.
Thus, a total of 900 RVEs were analyzed (which involved 5400 FEM simula-
tions). Models were generated, solved and postprocessed using Python scripts
and the PyAnsys/PyMAPDL package. FEM computations were parallelized
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Fia. 9. Typical RVE/FEM model of the hybrid material.

into 6 threads. In this case, the overall time of 6 homogenization tests of a single
RVE was recorded, including the whole process. The time was approximately 42
minutes and is relatively long due to the PyMAPDL preparation of the models
for the RVE analysis with periodic boundary conditions. Still, multiple parame-
terized FEM analyses require preparation and processing of the amount of data,
and Python scripting helps easy automation of this task.

By utilizing the FEM models, the effective Young modulus and shear modulus
were derived from the effective compliance, which represents the inverse of the
material’s stiffness. The results showed that the structures are isotropic. This is
caused by the fact that the elastic contrast between phases is close to unity. The
normalized results for these moduli are presented in Figs. [I0]and [IT] respectively.
According to both RVE/FEM and D-I/FMBEM models, the effective Young
modulus of the hybrid reaches its local maximum E* in the approximate range
of ¢1 € (0.6,0.7) (Fig. [10). The maximum increases with the decrease of 11 to
reach the normalized value E* /Ep ~ 3 when the auxetic material is close to the
thermodynamic limit, i.e., vy = —0.9. This result agrees with . However, here,
more values of v are investigated. In the case of RVE/FEM, the spread of the
results of 10 random RVEs gets wider for lower v;1. The spread is more visible near
the Young’s modulus optimum. On the other hand, for vy closer to 0, the spread
caused by the random geometry of the RVEs is negligible. Lower differences
between the RVE/FEM and D-I/FMBEM results are observed as well. For the
shear modulus, the spread of results caused by the random geometry of the RVE
is also wider near the optimum of the effective Young modulus (Fig. , i.e., for
c1 close to 0.6 or 0.7. Again, the width of the ranges decreases with increasing vy .

To give more details on the numerical results, the computed values of maxi-
mum Young’s modulus are gathered in Table 3| For the RVE/FEM, ranges and
mean values are given. The results confirm the observed dependence of the spread
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FiGg. 11. Normalized effective shear modulus of the hybrid material.

of the effective moduli calculated by RVE /FEM. The width of the interval related
to the mean value is: 7.2% for ¢; = —0.9 and 2% for ¢; = —0.1. In addition to the
numerical values of the moduli, Table [3| shows the actual value of the position
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of its maximum calculated by RVE/FMBEM: ¢; € {0.6;0.7}, and D-I/FMBEM:
¢1 € (0.61;0.71). The maximum relative difference in Young’s modulus between
the mean RVE/FEM and D-I/FMBEM results is observed for v; = —0.9 and is
about 6%. The respective difference for 1 = —0.1 is less than 0.01%.

This example shows that the proposed mean-field/FMBEM approach can be
efficiently applied to design new hybrid materials. A total of 108 D-I/FMBEM
simulations with lower number degrees of freedom (N ~ 10%) against 5400
RVE/FEM simulations (N ~ 10°) were run to obtain comparable results captur-
ing the maximum of the hybrid material. The D-I/FMBEM overall time, i.e., for
all material constant combinations, was comparable to the analysis of just a sin-
gle RVE modelled by the FEM and pre- and postprocessed by using PyMAPDL
(one hour versus about 42 minutes). Analyses of many RVE/FEM models require
much more effort than the mean-field/ FMBEM approach. Thus, the proposed
approach can be applied to efficiently explore the space of properties of new
materials, including hybrids with auxetic phases, although the modelling has to
be performed carefully due to possible inaccuracy of Mori—Tanaka predictions.

TaABLE 3. Optimized effective Young’s modulus of the hybrid material.

y RVE/FEM D-I/FMBEM
1 min(E*/Eo) | max(E* /Eo) | mean(E*/Eo) | éi | E*/Eo | é

-0.1 1.11641 1.13854 1.12621 0.6|1.12707 | 0.61
—-0.2 1.16605 1.19367 1.18028 0.6 [ 1.18090 | 0.62
-0.3 1.23412 1.26388 1.24893 0.6]1.24944 | 0.63
—-0.4 1.31628 1.36421 1.33630 0.6|1.33785 | 0.65
-0.5 1.43262 1.48009 1.45661 0.7]1.45466 | 0.66
—-0.6 1.58419 1.69782 1.62543 0.7(1.61707| 0.67
-0.7 1.84081 1.92799 1.87927 0.7(1.87992 0.70
-0.8 2.21331 2.36322 2.28196 0.7]2.22785 | 0.69
-0.9 3.03128 3.26649 3.15850 0.7(2.96723|0.71

4.4. Comparison of averaged strains computed by different approaches

A comparison of averaged strains over phases computed by different ap-
proaches was performed. For the FEM, strains in the centroid of finite elements
g; were extracted and applied to the averaging over phases similar to [10]:
(13) (i, ~ Zt T

. J/Q, ~ T 0 - _
S S
where ) is the number of finite elements used to discretize corresponding
phase: Qy (matrix) or €y (particles). V¢ is the volume of the eth element in
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the phase. In the M-T/FMBEM and D-I/FMBEM calculations, corresponding
dilute concentration tensor B or , and Eqgs. and were
applied. A comparison of averaged strains over composite phase computed by
RVE/FEM, M-T/FMBEM and D-I/FMBEM for structures from the previous
sections with the highest differences between effective moduli predictions is pre-
sented in Tables [ 5| and @] and Figs. and . In the case of RVE/FEM,
probability density histograms are also presented. Table [7] contains a comparison
of the standard deviation of the strains computed by RVE/FEM in the phases
of the materials.

TABLE 4. Average strains in the composite with spherical particles for ¢; = 0.45
and €11,23 = 1073,

(e11) (e23)

RVE/FEM | M-T/FMBEM | D-I/FMBEM | RVE/FEM | M-T/FMBEM | D-I/FMBEM
O |1.81631e-4| 1.60143e-4 | 2.28406e-4 |1.60245e-4| 1.34431e-4 | 1.93583e-4
Qo |1.66986e-3| 1.68716e-3 | 1.63130e-3 |1.68737e-3| 1.70819e-3 | 1.65980e-3

Phase

TABLE 5. Average strains in the composite with randomly oriented cubic particles for
c1 =0.25 and &1 23 = 1075,

(e11) (e23)

RVE/FEM | M-T/FMBEM | D-I/FMBEM | RVE/FEM | M-T/FMBEM | D-I/FMBEM
O |4.25810e-4| 4.12330e-4 | 4.70315e-4 |3.70921e-4| 3.42990e-4 | 3.97530e-4
Qo [1.19140e-3| 1.19589e-3 | 1.17656e-3 |1.20969e-3| 1.21900e-3 | 1.20082e-3

Phase

TABLE 6. Average strains in phases of the hybrid material for ¢; = 0.7, v1 = —0.9
and €11,23 = 1073.

(e11) (e23)
RVE/FEM | M-T/FMBEM | D-I/FMBEM | RVE/FEM | M-T/FMBEM | D-I/FMBEM
(93 8.00273e-4 | 7.18744e-4 8.97761e-4 | 5.83671e-4| 3.76710e-4 6.64330e-4
Qo 1.45727e-3| 1.65626e-3 1.23856e-3 |1.95317e-3| 2.45433e-3 1.78324e-3

Phase

One can assess the predicted mean strains over phases by comparing the
difference between RVE/FEM and mean-field/FMBEM strain results normal-
ized by £1123 = 0.001. Accordingly, for the composite with spherical parti-
cles, the maximum normalized difference is observed between RVE/FEM and
D-I/FMBEM and equals 4.68% (particles, normal-strain test) and 3.86% (ma-
trix, normal strain test). The M-T/FMBEM approach gives slightly closer values
to RVE/FEM average strains as the difference in all cases does not exceed 2.6%.
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Fia. 12. Composite with spherical particles: probability densities of strains over particle and
matrix finite elements in typical RVE model, and average strains in constituents computed
by different approaches for ¢; = 0.45 and: a) &11 = 1073, b) &3 = 1072 (in each case
remaining components of £ are equal to 0).

The differences between the normal-strain and shear-strain tests are comparable
(Table 4] Fig. . For the composite with cubic particles, the maximum normal-
ized difference is also observed between RVE/FEM and D-I/FMBEM and equals
4.45% (particles, normal-strain test) and 1.48% (matrix, normal-strain test).
The corresponding maximum difference for M-T/FMBEM-RVE/FEM results
does not exceed 2.8% (shear test, particles). Similarly to the composite with



24 J. PTASZNY

(a) Randomly oriented cubic particles, ¢; =0.25, §1; =103
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Fi1c. 13. Composite with randomly oriented cubic particles: probability densities of strains
over particle and matrix finite elements in typical RVE model, and average strains
in constituents computed by different approaches for ¢; = 0.25 and: a) &11 = 1073,
b) &23 = 1072 (in each case remaining components of & are equal to 0).

spherical particles, the differences in the normal-strain and shear-strain tests are
comparable. The assumption of mean strains is acceptable for the conventio-
nal composites, reinforced with spherical and cubic particles within the con-
sidered range of volume fractions. The corresponding vertical lines in Figs. [12]
and almost overlap. However, the standard deviation for FEM /RVE averaged
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(a) Hybrid material, v; = — 0.9, ¢c; =0.7, &, = 1073
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Fic. 14. Hybrid material: probability densities of strains over particle and matrix finite
elements in typical RVE model, and average strains in constituents computed by different
approaches for ¢; = 0.7, v1 = —0.9 and: a) &1; = 1073, b) &3 = 1073 (in each case remaining
components of & are set to 0).

strains in cubic particles is higher than for spherical ones (Tablem). Thus, there is
a wider spread of strains from the mean value in cubic particles than in spherical
ones yet for lower volume fractions of the reinforcement (Figs. [12| and .

In the case of the hybrid material, the differences in mean strains are much
higher. Accordingly, the normalized ‘M-T/FMBEM-RVE/FEM’ difference
ranges from 20.7% (particles, shear-strain test) to even 50.12% (matrix, shear-
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TABLE 7. Standard deviation of strains €7; o3 in the RVE/FEM models considered

in this section (Figs. and [14)).

Composite type

C1

Strain test

Particles (1)

Matrix (Q0)

. . 0.45| &11=1e-3 3.93674e-5 8.71087e-4

Spherical particles
£23=1e-3 3.56887¢e-5 6.59923e-4
251 &1p=le- 21 - .14276e-4

Randomly oriented cubic particles 0-25] en=le-3 9-21305¢-5 3 76e

g23=1e-3 7.18191e-5 2.43658e-4
Hybrid material 0.7 | &11=1e-3 2.63011e-4 3.53882¢-4
Ea3=1e-3 1.90400e-4 7.40015e-4

strain test), Table @ The results correspond to inaccurate predictions of the
maximum effective Young modulus presented in Appendix. In the case of
D-I/FMBEM, the difference ranges from 8.07% (particles, shear-strain test)
to 21.87% (matrix, normal-strain test). The lower differences in mean strains
explain better accuracy of the D-I/FMBEM in predicting the effective moduli
of the hybrid material compared to the M-T/FMBEM approach. The auxetic
phase behaves similarly to reinforcement particles in conventional composites —
they undergo lower strains than the non-auxetic (matrix) phase. The spread of
strains from mean values in the particle (auxetic) phase is the widest from the
compared cases (Fig. [L4f and Table . Therefore, careful consideration is essen-
tial when modelling hybrid materials with auxetic phases using the mean-field
approach, though such modelling can be feasible and efficient.

5. Conclusions

The fast multipole boundary element method (FMBEM) for 3-D elasticity
was combined with the mean-field approach: Mori-Tanaka and the interpola-
tive scheme [26], to efficiently homogenize particulate composites. The FMBEM
was applied to solve the single-inhomogeneity problem to calculate the strain
concentration tensor. As opposed to the widely applied finite element method
(FEM), the FMBEM uses only the discretization of the boundary of the struc-
ture. Three examples were considered: composites with randomly distributed
spherical particles, composites with randomly distributed and oriented cubic par-
ticles, and hybrid materials with aligned and randomly distributed cubic auxetic
subregions. The models were validated by analytical methods, numerical results
from the literature, and homogenization with the use of representative volume
elements (RVEs) modeled by the FEM. The average strains predicted by the
mean-field approaches were compared to RVE/FEM models. Corresponding av-
eraged values coincide for the conventional composites reinforced with spheri-
cal and cubic particles, whereas careful consideration is crucial when modelling
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hybrid materials with auxetic phases due to higher differences, especially for
the M-T/FMBEM approach. The prediction can be enhanced using the inverse
Mori—Tanaka method along with an interpolation of strain concentration tensors
found in the literature.

The proposed mean-field/ FMBEM approach offers a significant reduction of
the modeling effort, compared with the FEM/RVE analysis, by the decrease
in the number of boundary value problems to be solved, their size, computation
time and the simplification of meshing. Although efficient, the proposed approach
is limited to perfectly bonded, isotropic, and linear elastic constituents. On the
other hand, an extension of the application range is possible by the applica-
tion of existing BEM formulations for anisotropy, inelastic materials, contact,
or coupling with the FEM. Efficient application of the FMBEM in the contri-
bution tensor approach, which involves the solution of the single-inhomogeneity
problem, is also possible.

Appendix. M-T/FMBEM predictions of elastic moduli for the hybrid
material

The Appendix contains M-T/FMBEM and inverse Mori-Tanaka/FMBEM
(I-M-T/FMBEM) results for the hybrid material analyzed in the last example
(Section 4.3). For the comparison, only three values of v; were selected: —0.1,
—0.5 and —0.9, for clarity. Results for normalized Young’s and shear moduli
are presented in Figs. and The D-I/FMBEM models were validated by
RVE/FEM analyses in Section 4.3. The M-T/FMBEM approach, does not pre-
dict the optimum value of Young’s modulus correctly, for lower values of v.
However, it agrees with both RVE/FEM and D-I/FMBEM for ¢; < 0.1. On
the other hand, the inverse I-M-T /FMBEM related to the dilute strain concen-
tration B, (see in Section 2 for its definition) agrees with the RVE/FEM pre-
dictions for ¢; > 0.9. According to the interpolative scheme and ,
for small ¢; the M-T approach is dominant in the solution, and on the other
hand for high c¢;, the inverse Mori-Tanaka method dominates. The observed
behaviour of the predictions can be explained by the fact that the Mori—Tanaka
approach is well suited for composites with small volume fractions of inhomo-
geneities with matrix-inclusion topology. For volume fractions close to 50% the
topology of composite materials changes to the interwoven type, which is not
well described by the Mori—Tanaka approaches.

Both M-T and I-M-T predict different optimum for the effective Young mod-
ulus. Only the combination of these two methods by using the interpolation func-
tion gives results comparable to the RVE/FEM models. Clearly, the predictions
of effective moduli for intermediate values of ¢; are influenced by the interpola-
tion function. Note that the interpolation function is an arbitrary choice.
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—— I-M-T/FMBEM, v;=-0.9
— — D-I/FMBEM, v;=-0.9
—  M-T/FMBEM, v;=-0.9
------- I-M-T/FMBEM, v,=-0.5
—.- D-I/FMBEM, v;=-0.5
- . M-T/FMBEM, v;=-0.5
- I-M-T/FMBEM, v;=-0.1
-w= D-I/FMBEM, v;=-0.1
- . M-T/FMBEM, v;=-0.1
@ RVE/FEM, v; =-0.9
¥ RVE/FEM, v; =-0.5
# RVE/FEM, v; =-0.1

C1

FiGg. 15. Normalized effective Young’s modulus of the hybrid material computed by different
mean-field approaches.

14
12 - —— |-M-T/FMBEM, v;=-0.9
— — D-I/FMBEM, v;=-0.9
10 4 —  M-T/FMBEM, v,=-0.9
------- I-M-T/FMBEM, v;=-0.5
§’ 8- —.- D-I/FMBEM, v,=-0.5
I0) - - M-T/FMBEM, v;=-0.5
6 - . |-M-T/FMBEM, v;=-0.1
=w=- D-I/FMBEM, v;=-0.1
4 - . M-T/FMBEM, v;=-0.1
”~ =
2 = -v-"""’*— g Eﬁfiim 31 g.g
- - g , b1 =-0.
P JE S S
-#'-2;:‘-'-#-:—"*' ol | ¥ RVE/FEM, v =-0.1
0.0 0.2 0.4 0.6 0.8 1.0
C1

Fi1Gc. 16. Normalized effective shear modulus of the hybrid material computed by different
mean-field approaches.

The effect of different optimal values predicted by various mean-field approaches
decreases as the Poisson ratio vy increases (the auxetic behavior of phase ‘1’ gets
weaker). For Poisson’s ratio of —0.1, the three approaches yield nearly identical
results. Similar trends can be observed regarding the shear modulus. The great-
est discrepancy in the shear modulus results occurs at intermediate values of c;.
Additionally, a comparable phenomenon of expanding bounds with decreasing
Poisson’s ratio of the auxetic phase v, was reported in |27].
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