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We consider well-established techniques for the residual error estimation of
finite element approximations applied to problems in finite elasticity. The element
implicit residual method and the method of self-equilibration are applied to nearly
incompressible and anisotropic finite strain elastic cases. Our contribution regarding
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1. Motivation

The assessment of the reliability of a finite element solution which
models a real problem plays a crucial role in many areas of mechanics. In Linear
Fracture Mechanics (LFM) prediction of crack-growth is central. In LFM stress-
intensity functions with high accuracy are required. In this particular case the
strength and the location of the stress singularity is known. The necessary accu-
racy of the displacement solution to the governing Navier–Lamé linear elasticity
boundary value problem can then be obtained using a suitable a priori strongly
graded mesh enclosing the crack-tip – in one shot. That is, without any error es-
timation followed by hp-adaptivity. Moreover, in LFM simultaneous multi-crack
scenarios in huge problems can be studied reliably using the so-called splitting
method [1], due to the superposition principle. Huge reliable databases of stress-
intensity functions are created using this approach. These databases are used
to determine the service life of aircraft [2]. The global problem is solved using
the massively parallelized code STRIPE [3], with the multi-level domain de-
composition (DD) solver [4] which is extremely efficient for a coercive problem.
The local, not intrusive problems, are solved massively in parallel aside. Both
strides are run on some of todays’ most powerful computers. The methodology
has reached a high level of technical readiness level (TRL) and it is mature.
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Without the superposition principle, and without guaranteed coerciveness,
the situation changes drastically. The issue of computing finite element approx-
imations reliably for large scale problems in geometric nonlinear elasticity is
a challenge [5]. For an account in stiffened shell-like aeronautic structures, see [6].
It becomes evident tackling problem with complex instabilities [7] and even more
modelling finite strains [8]. The discretization errors we are considering here, are
mainly not caused by strong singularities, as opposed to the situation in LFM.
Instead, the solution, the displacement fields may rapidly change character with
the load level. Especially in cases with local loss of stability [7]. For large scale
problems, the use of a sufficiently fine homogeneous mesh will generally be im-
possible and inefficient, and it may be impossible to construct a priori a strongly
graded mesh to cover the evolution1.

Therefore, to compute a solution in finite elasticity with the desired accuracy
we use self-equilibrated residual based error estimates on 1-irregular meshes and
mark candidate elements allowing for 1-irregular h-refinement. (By 1-irregularity
we understand the situation when we divide selected elements preserving the
principle that the ratio of sizes of neighboring elements cannot exceed 1 : 2, i.e.,
the larger hexahedral element has 4 smaller element-neighbors across its face
or 2 across the edge. Compatibility of approximation is enforced through multi-
point constraints). The procedure will typically be repeated in several steps for
each load-increment of the Newton–Raphson method used. Solving the incremen-
tal linearised problems we can in fact use a DD-solver. The DD part, deciding
which subdomains are subject to error estimation and adaptivity and which
are fixed, is outside the scope of this study. For simplicity, here we use a one-
level DD [9–11], applying error estimation and adaptivity to all subdomains.
As a consequence, the whole tangent stiffness has to be factored again as soon
as an element is divided or its polynomial degree is changed. On the other hand,
full hp-adaptivity using 1-irregular h-subdivisions and anisotropic p-enrichments
is in our hands using the 3Dhp code, described in the textbooks [12, 13].

The state-of-the-art of a posteriori error estimation in the finite element
analysis is captured in the textbooks [14–16] and in the review article [17].

The main focus of this study is the estimation of the local discretization error
in the displacements, using implicit a posteriori residual based estimators, pro-
posed by Ainsworth and Oden [18] and improved by Ladevéze and Maun-
der [19]. The main advantage of these estimates is that they do not involve the
polynomial-order dependent constants.

Rachowicz [20] generalised this approach for 3D 1-irregular h-subdivi-
sions of hexahedra and linear elliptic boundary value problems. This estimation
technique was applied for linear steady-state Maxwell’s scattering problems by

1Needless to say, knowledge about corners holes etc. is used in the nominal meshing.
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Zdunek and Rachowicz in [21]. The method of Ainsworth and Oden was
generalised for 3D 1-irregular meshes of triangular prisms by Zboiński [22].

Ainsworth and Oden [14] pointed out that their error estimation tech-
nique without polynomial-order dependent constants is generalisable to non-
linear problems and provided some examples [14, Section 9.4]. Brink and Stein
[23] generalised the technique to nearly incompressible large strain elasticity in-
troducing a Helmholtz decomposition of the first Piola–Kirchhoff stress. Later
Rüter and Stein [24] applied this idea to transverse isotropic finite elasticity.
So far these error estimates were used applying regular h-refinements to regu-
lar meshes. The generalisation of the error estimation technique on 1-irregular
meshes allowing for 1-irregular h-refinements in finite elastic problems with
1- and 2-fibre family reinforcements were considered by Zdunek and Racho-
wicz [25] and [8].

In this contribution we use and evaluate two implicit a posteriori error es-
timation methods applied to problems in finite elasticity; namely the method
of Demkowicz et al. [26] and the approach with self-equilibration of residuals
due to Ainsworth and Oden [18]. The self-equilibration has the advantage
that one can solve local purely Neumann problems, on the element level and it
is free from polynomial-order-dependent constants. The equilibration procedure
will be considered in two variants, the first, due to Ainsworth and Oden [27],
and the second, due to Ladevéze and Maunder [19], which we generalized to
3D 1-irregular meshes.

We compare the error estimates for representative examples of isotropic in-
compressible and anisotropic finite elasticity. We investigate whether estimated
element errors of these techniques demonstrate a common growth of value as
this is necessary for adaptivity of meshes.

In view of the discussion in the introduction, 3D finite element codes us-
ing 1-irregular automatically generating adaptive meshes in finite elasticity are
rare. They are also necessary since sources of errors change with finite deforma-
tions, directions of reinforcing fibres. Other applications may involve the point
of contact or the line of necking, etc.

It is also confirmed that such codes are developed in leading scientific in-
stitutions, see Badger et al. [28], allowing one to solve problems of the size
109 degrees-of-freedom on adaptive meshes2.

The rest of paper is organised as follows. In Section 2 the mixed finite element
formulation for nearly incompressible materials in finite elasticity is presented. In
Section 3.1 the idea to use a Helmholtz decomposition of the first Piola–Kirchhoff
stress in error estimation [23, 24] is summarised. In Section 3 also the a poste-
riori implicit error estimation methods we employ are presented. The one by

2This is a newer version of 3Dhp on https://github.com/Oden-EAG/hp3d.
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Demkowicz et al. [26] is outlined in Section 3.2 and in Section 3.3 the method
due to Ainsworth and Oden [18] is presented. In Section 3.4 the two variants
of self-equilibration algorithms, [19] (Section 3.4.1) and [29] (Section 3.4.2) are
detailed.

The error estimation procedures outlined are employed in numerical ex-
amples with regular meshes in Section 4. The generalisation for constrained
meshes is considered in Section 5. Results to solutions of numerical examples
with 1-irregular meshes are presented in Section 6. The application of the error
estimation procedures to anisotropic finite elasticity is given in Section 7. Corre-
sponding numerical results for example problems in anisotropic finite elasticity
are presented in Section 7.2. We finalize the contribution by a short summary
with conclusions (Section 8).

2. Finite Element Method for nearly incompressible materials

We use the standard Lagrangian description of finite elasticity

(2.1) x = x(X, t),

where X denotes location of a particle at time t = 0 and x a current location at
time t. We also introduce the deformation gradient and the right Cauchy–Green
tensor and the volume ratio:

(2.2) F =
∂x

∂X
, C = F TF , J = det(C)1/2 = det(F ) > 0.

Following Flory [30] we introduce multiplicative decomposition of deformation
gradient

(2.3) F̄ = J−1/3F , C̄ = J−2/3C.

With the right Cauchy–Green deformation tensor we associate its invariants:

(2.4) I1 = tr(C), I2 =
1

2
[(tr(C)2 − tr(C2)], I3 = detC,

and modified invariants:

(2.5) Ī1 = tr(C̄), Ī2 =
1

2
[(tr(C̄)2 − tr(C̄

2
)], Ī3 = det C̄ = 1.

We express the strain energy in terms of invariants:

(2.6) Ψ =
κ

2
(J − 1)2︸ ︷︷ ︸

Ψvol

+
µ

2
(Ī1 − 3) +

c

2
(Ī2 − 3)︸ ︷︷ ︸

Ψiso

.
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The parameters κ, µ and c are empirically determined material constants, κ is
called a bulk modulus while µ is a shear modulus. It is known that when κ� µ, c
then material is nearly incompressible. From the expression for the strain energy
we obtain the following constitutive relations for the second Piola–Kirchhoff
stress tensor S and the pressure p:

(2.7)


S = −pJC−1 + J−2/3Dev[S̄],

p = −Ψ′vol(J),

S̄ = 2
∂Ψiso

∂C̄
,

where Dev[•] = (•)− 1
3 [(•) : C]C−1 is the deviatoric operator.

The boundary-value problem for finite elasticity can be formulated with the
first Piola–Kirchhoff stress tensor P = FS as follows: find {u, p} such that

(2.8)


−DivP = b̂ in Ω,

u = û on ΓD,

PN = t̂ on ΓN ,

where u is the displacement, u = x−X, and where Ω is the domain occupied by
the solid body in the reference configuration. Further, û is a prescribed displace-
ment on the Dirichlet boundary ΓD, and t̂ is the load on the Neumann boundary
ΓN , b̂ denotes the body forces per unit volume. N is the unit outward normal
on ΓN . Parts of the boundaries ΓD and ΓN satisfy the conditions: ΓD∪ΓN = ∂Ω
and ΓD ∩ ΓN = ∅.

The variational formulation of (2.8) is obtained by multiplication of (2.81)
by a vector smooth function v, integration over Ω, and integration by parts, and
it reads:

(2.9)
∫
Ω

P : ∇v dV =

∫
Ω

b̂ · v dV +

∫
ΓN

t̂ · v dS.

Of course the first Piola–Kirchhoff stress tensor formulation can be replaced by
the symmetric second Piola–Kirchhoff stress tensor P = FS, which allows one
to involve the symmetric part of the gradient of test functions. Also, when the
material is nearly incompressible the finite element formulation can suffer from
instability, oscillations and locking. The remedy for this is a 2-field mixed for-
mulation which besides the equilibrium also enforces weakly the constitutive
equation for the pressure (2.72). With these two remarks in mind we can write
the variational formulation as follows:
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(2.10)



∫
Ω

1

2
(F T∇v + ∇Tv F ) : S dV =

∫
Ω

b̂ · v dV +

∫
ΓN

t̂ · v dS, ∀v ∈ V,∫
Ω

(p+ Ψ′vol(J))q dV = 0, ∀q ∈ Q,

where F = ∂u/∂X+I and S depend on the displacement u and on the pressure,
see (2.7) (I stands for the identity matrix). The functional spaces for displace-
ments and for pressure are as follows:

(2.11)
V = {v ∈ {H1(Ω)}3 : v = 0 on ΓD},
Q = L2(Ω).

As far as discretization is concerned, the finite element spaces for the master
hexahedron K̂ = [0, 1]3 were proposed by Simo, Pister and Taylor [31]:

(2.12)

{
Q̂p = span{ξi · ηj · ζk : i, j, k ≤ p, ξ, η, ζ ∈ [0, 1]},
P̂ p−1 = span{ξi · ηj · ζk : i+ j + k ≤ p− 1, ξ, η, ζ ∈ [0, 1]}.

We follow the standard approach. The computational domain Ω is covered with
elements K which are images of a master hexahedron K̂ in a parametric trans-
formation TK ∈ {Q̂p}3 (i.e., TK is a linear combination of shape functions on K̂)
which is invertible:

(2.13) K = TK(K̂).

The element faces match for neighboring elements. Then we define the shape
functions on the actual elements K:

(2.14)
Qp(K) = {ψ̂(T−1

K (x)) : ψ̂ ∈ Q̂p},
P p−1(K) = {ψ̂(T−1

K (x)) : ψ̂ ∈ P̂ p−1}.

Finally, the discrete spaces for the whole domain Ω are defined:

(2.15)
Vh = {v ∈ {H1(Ω)}3 : v|K ∈ {Qp(K)}3},
Qh = {q ∈ L2(Ω) : q|K ∈ P p−1(K)}.

Functions of Vh are continuous while those of Qh discontinuous on interelement
boundaries. Boundary conditions imposed on Vh are analogous as on V .

We anticipate h-adaptivity of the mesh, i.e., a possible subdividing of ele-
ments whose estimated error exceeds a prescribed percentage of the maximum
element error (strategy of equidistribution of errors of Babuška and Rhein-
boldt [32]). In the adaptive process we restrict the adaptive meshes to so-called
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1-irregular meshes. It means that the ratio of sizes of any neighboring elements
does not exceed 1 : 2. Continuity of approximation for such meshes is enforced
applying multipoint constraints and requires that the special relation of the
degrees-of-freedom of the smaller element to the degrees-of-freedom of its larger
neighbors is satisfied. Such relations were presented in [33]. We discuss it briefly
in Appendix B.

3. Residual implicit error estimates

In this section we consider the error estimation for nonlinear elasticity.
The procedure utilizes the approaches applicable for linear problems. The non-
linear procedure is discussed first. Then we outline two error estimation tech-
niques for the linear case, both of implicit type. The first is the element residual
method developed by Demkowicz et al. [26] and, in parallel, by Bank and
Weiser [34], and the second method is the technique with self-equilibrated
residuals designed by Ainsworth and Oden [18]. The last method is used with
the two equilibration procedures proposed by Ladevéze and Maunder [19]
and Ainsworth and Oden [27].

3.1. The idea to estimate the error due to Rüter and Stein

Rüter and Stein in [24] proposed to apply the Helmholtz decomposition of
the error expressed by the 1st Piola–Kirchhoff tensor P − P h = ∇ψ + ∇× φ,
with ψ ∈ V and φ ∈ {v ∈ [H1(Ω)]3×3 : (∇ × v)N |ΓN = 0}. The tensor P h

results from the discrete solution, P h = F (uh)S(uh, ph). This allows one to
represent the residual as follows:

R(v) =

∫
Ω

b̂ · v dV +

∫
ΓN

t̂ · v dS −
∫
Ω

P h : ∇v dV(3.1)

=

∫
Ω

(P − P h) : ∇v dV =

∫
Ω

∇ψ : ∇v dV, ∀v ∈ V.

So, we end upwith the following equation to evaluate the error function: findψ∈V :

(3.2) (ψ,v)1,Ω = R(v), ∀v ∈ V.

Of course solving exactly this problem in the whole Ω is impossible as it is in-
finite dimensional and even such a solution for adequately enriched FE space is
prohibitively expensive. Therefore it is proposed to estimate |ψ|1,Ω with a cer-
tain error estimation technique. Then the total error of the mixed variational
formulation is expressed as in [24]:

(3.3) |u− uh|1,Ω + ‖p− ph‖0,Ω ≤ C(|ψ|1,Ω + ‖Ψ′vol + ph‖0,Ω),
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where C > 0 is a constant depending on the problem. The contribution of the
pressure on the right-hand side of (3.3) does not cause any problems: it boils down
to computing the L2-norm of ph and Ψ′vol(Jh) with Jh = detF (uh), resulting
directly from the FE analysis. In the following discussion, since components of
the error function ψ are decoupled in (3.2), we consider the error estimation
techniques limited to the scalar Poisson equation and its weak formulation:

(3.4)


−∇ · (a∇u) = f in Ω,

u = 0 on ΓD,

a
∂u

∂n
= ĝ on ΓN ,

⇐⇒



B(u, v) = L(v) ∀v ∈ V,

B(u, v) =

∫
Ω

a∇u ·∇v dV,

L(v) =

∫
Ω

fv dV +

∫
ΓN

ĝv dS,

with a = 1. We note that estimation of |ψ|1,Ω is possible by using the methods
typical for linear problems. However, the final estimate of |u − uh| introduces
the constant C which takes into account the analysis of the nonlinear problem,
see Brink and Stein [23].

3.2. The implicit error estimate of Demkowicz et al. [26]

The method is quite inexpensive and it leads to satisfactory results. The basic
step of the method is to define an enriched space of element shape functions
Vh,p+1(K) = {Qp+1(K)}3, with polynomial order p + 1. In this space we define
the kernel of the interpolation operator Πhp

3:

(3.5) MK = {v ∈ Vh,p+1(K) : Πhpv = 0}.

In other words MK consists of element shape functions of p + 1 order which
vanish at the interpolation points (for instance of the Lagrangian type). Next,
we consider the element residual of the form:

rK(v) =

∫
K

(f + ∇ · (a∇uh))v dx+

∫
∂K∩ΓN

(
ĝ − a∂uh

∂n

)
· v dS(3.6)

+

∫
∂K\∂Ω

1

2

[∣∣∣∣a∂uh∂n
∣∣∣∣] · v dS,

3First, we define interpolation on the master element: (Π̂hpv̂)(ξ) = Σ
(p+1)3

i=1 v̂(ξi)l̂i(ξ), where
v̂(ξ) = v(TK(ξ)) and ξi, l̂i, i = 1, . . . , (p + 1)3 are the Lagrangian points and polynomials on
K̂ = [0, 1]3. Then (Πhpv)(x) = (Π̂hpv̂)(T−1

K (x)).
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where [|a ∂uh/∂n|] denotes the jump of the flux between the neighboring ele-
ment and element K. We formulate the local boundary-value problem in the
kernel MK : find φK(x) ∈MK such that:

(3.7) BK(φK , v) = rK(v), ∀v ∈MK ,

where BK is a restriction of the form B(·, ·) to the element K. The error estimate
in the energy norm ‖ · ‖E = B(·, ·)1/2 can be found as:

(3.8) ‖uh − u‖2E ≤ C
∑
K

‖φK‖2E,K ,

where summation goes through all elements in the mesh, and where C is a pa-
rameter growing moderately with p. We note that the residual can be expressed
in an alternative way (after integrating by parts the second derivatives of the
first integral):

(3.9) rK(v) = BK(uh, v)− LK(v) +

∫
∂K\∂Ω

〈
a
∂uh
∂n

〉
v dS,

where 〈a ∂uh/∂n〉 denotes the average flux between the elements. This form is
similar to the method of equilibrated residuals discussed below.

3.3. Residual error estimate with self-equilibration of residuals

The technique with self-equilibration of residuals caused a sort of revolution
in the area of error estimation. It was proposed by Ainsworth and Oden [18].
This method results in estimates without any scaling constants thus displaying
the direct error in the energy norm. The self-equilibration plays the essential role
as one can solve the purely Neumann local residual problems on elements.

We represent the global residual functional as the following sum of element
contributions:

r(uh, v) = B(uh, v)− L(v) =
∑
K

(BK(uh, v)− LK(v))(3.10)

=
∑
K

(BK(uh, v)− LK(v)− λK(v))︸ ︷︷ ︸
rK(v)

=
∑
K

rK(v), with
∑
K

λK(v) = 0,

(all summations go through all elements of the mesh). Above λK(v) there are
linear functionals constructed for elements K, and the last condition is required
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to keep consistency of the global residual ΣK(BK(uh, v)−LK(v)) with the resid-
ual augmented by λK , i.e., ΣK(BK(uh, v) − LK(v) − λK(v)). BK and LK are
restrictions of forms B and L to the element K, respectively. In addition, we
construct the functionals λK in such a way that:

(3.11) rK(1) = 0, for all elements K.

This condition implies the self-equilibration of the residuals as a constant func-
tion in the null space of the Poisson equation. Self-equilibration allows one to
solve the local purely Neumann problems on the elements of the form: find
φK ∈ V (K) = H1(K) such that:

(3.12) BK(φK , v) = rK(v), ∀v ∈ V (K).

This results in the following estimate:

(3.13) ‖uh − u‖2E ≤
∑
K

‖φK‖2E,K .

Note that there is no auxiliary constant scaling the estimate. As the problem
(3.12) is infinite dimensional, one solves it in the enriched polynomial space of
shape functions of the element. Usually these are p+ 1 order polynomials.

3.4. Self-equilibration of residuals

The essential problem of the Ainsworth and Oden error estimation technique
is self-equilibration of residuals understood as in Eq. (3.11), i.e., that element
residuals vanish for constant test functions. The most important issue is whether
one can solve this problem locally, without involving all the elements in the mesh.
Such an algorithm actually exists. We elaborate the algorithm of Ladevéze and
Maunder [19, 20] and the one proposed by Ainsworth and Oden [18, 27].

3.4.1. Algorithm of Ladevéze and Maunder. We define the average flux between
elements K and L over their common face:

(3.14) t̄K =
1

2
((a∇uh)K + (a∇uh)L) · nK ,

where nK is a unit normal vector on the surface of the element K. Next, we
wish to find a function θK(s) : R3 3 s → θK ∈ R, where s is a location on the
boundary ∂K, to satisfy the following conditions for all 8 trilinear functions ψnK
associated with vertices of the element K:
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(3.15)
λK(ψnK)︷ ︸︸ ︷

rK = BK(uh, ψ
n
K)− LK(ψnK)−

∫
∂K

t̄Kψ
n
K dS︸ ︷︷ ︸

GnK

−
∫
∂K

θKψ
n
K dS = 0,

n = 1, . . . , 8.

Here GnK is a known part of the element residual while θK(s) is to be found.
Ladevéze called these statements prolongation conditions. We note that, since
Σ8
n=1ψ

n
K = 1, summation of (3.15) implies equilibrium as in (3.11). We postulate

that the function θK(s) is a linear combination of 4 bilinear functions on each
face f of element K:

(3.16) θK|f (s) =
4∑

n=1

θfn · ψnK|f (s),

where θfn are the coefficients to be found. Using the known parameters GnK as
noted in (3.15), we can write the prolongation conditions in the form:

(3.17)
∫
∂K

θK(s)ψnK(s) dS = GnK , n = 1, . . . , 8.

In this way we reduced the problem of finding θK(s) to obtain for each elementK,
4 × 6 parameters θfn, such that functions θK|f (s) are identical but opposite for
the neighboring elements. It turns out that a solution of this problem is possible
by considering vertex nodes of the element K separately. The typical situation
of a regular mesh is shown in Fig. 1.

Fig. 1. Typical situation: 8 hexes surrounding one vertex and the corresponding 12 faces
adjacent to this vertex.

This solution can be obtained as follows.
For a fixed vertex n of the element K, let the unknown contributions to the

integral on the left-hand side of (3.17) be denoted as gn,fK :
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(3.18)
∫
∂K

θKψ
n
K dS =

∑
f∈supp(ψnK)

gn,fK , where gn,fK =

∫
f

θKψ
n
K dS.

With this notation the prolongation conditions take the form:

(3.19)
∑

f∈supp(ψn)

gn,fK = GnK , n = 1, . . . , 8.

We assume that vertex n belongs to N neighboring elements of K (N = 8 in the
example of Fig. 1). Each element has 3 faces adjacent to vertex n, and each face is
common to 2 elements. This means that we have 3/2N independent parameters
di corresponding to unknown coefficients θfn (we have 3/2·8 = 12 in the example).
Let’s denote by i(K, f) appropriate indices of di, and by sgn(K, f) = ±1 the
corresponding signs connecting di and g

n,f
K :

(3.20) gn,fK = di(K,f) · sgn(K, f), ∀K ∈ supp(ψn).

With this notation we state the prolongation conditions as follows:

(3.21)
∑

f∈supp(ψn)∩∂K

di(K,f) · sgn(K, f) = GnK , ∀K ∈ supp(ψn),

or in the matrix form:

(3.22) Ad = G.

The above system of N equations with 3/2N unknowns is underdetermined. Its
explicit form is shown in Fig. 2 (for an example rectangular mesh). We can solve
it by considering the minimization of function dTMd, with M being a selected



+1 +1 +1
−1 +1 +1
−1 +1 +1
−1 −1 +1

+1 −1
−1 +1 +1 −1
−1 +1 −1
−1 −1 −1


︸ ︷︷ ︸

A



d1

d2

·
·
·
·
·
·
·
d12


︸ ︷︷ ︸
d

=



G1

G2

·
·
·
·
·
G8


︸ ︷︷ ︸
G

Fig. 2. Explicit form of system of equation (3.22) (the empty entries correspond to zero).
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symmetric positive definite matrix and under the condition that Ad = G, using
the method of Lagrange multipliers Λ ∈ RN :

(3.23)
{

1
2d

TMd = min,
Ad = G,

=⇒
{
Md+ATΛ = 0,

Ad = G.

Having found the parameters di for all faces attached to the subsequent corners n,
we can go back to find the parameters θfn. We use the definition of gn,fK (3.18)
and the postulated expansion of function θK|f (3.16):

(3.24) gn,fK =

∫
f

( 4∑
m=1

θfmψ
m
K|f

)
︸ ︷︷ ︸

θK|f

ψnK|f dS, n = 1, . . . , 4 → gnfK =
4∑
i=1

µmnθ
f
m,

where µmn =
∫
f ψ

m
K|fψ

n
K|f dS, is the mass-like matrix.

Selection of the matrixM could reflect the geometry of elements surrounding
the vertex n. However, for meshes close to uniform we selectedM=dia(1, . . . , 1).

3.4.2. Algorithm of Ainsworth and Oden. In this method we consider a similar
condition as in Ladevéze:

(3.25)
λK(ψnK)︷ ︸︸ ︷

BK(uh, ψ
n
K)−LK(ψnK)−

∫
∂K\∂Ω

t̄Kψ
n
K dS

︸ ︷︷ ︸
GnK

−
∫

∂K\∂Ω

ψnK(s)·µKL(s)

[∣∣∣∣a∂uh∂n
∣∣∣∣]dS = 0,

where functions µKL(s), are to be found between elements K and L, with a con-
dition that µKL = −µLK (to satisfy the requirement that ΣKλK = 0). The
procedure to evaluate functions µKL(s) is as follows:

First we define the quantity for a face between elements K and L:

(3.26) ρnKL :=

∫
ΓKL

ψnK(s)

[∣∣∣∣a∂uh∂n
∣∣∣∣] dS,

which can be called “jumps of the fluxes”. Next, we solve for coefficients µnKL for
the element K and all its neighbors L:

(3.27)
∑
L

µnKLρ
n
KL︸ ︷︷ ︸

µ̂KL

= GnK →
∑
L

µ̂nKL = GnK → µ̂nKL → µnKL =
µ̂nKL
ρnKL

.

The summation in (3.27) runs over all neighbors L of the element K. The system
of equations, the second version in (3.27), is identical as the system (3.22) pre-
viously considered in the Ladevéze and Maunder method, so we can solve it in
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identical manner. Finally, the functions µKL(s) are expressed by the above found
coefficients µnKL by interpolating them using vertex trilinear shape functions:

(3.28) µKL(s) =
8∑

n=1

ψnK(s)µnKL.

It can be verified that µKL(s) satisfy the condition (3.25) with ψnK being replaced
by a unit function 1:

(3.29) rk(1) = GnK(1)−
∫

∂K\∂Ω

1 · µKL(s)

[∣∣∣∣a∂uh∂n
∣∣∣∣] dS = 0,

which means equilibrium of the residual rK .
In the procedure outlined above there is a problem of zeroing of the flux jump

defined in Eq. (3.26) that appears in denominator of computing µnKL (3.27). This
issue was addressed in [27]. The face suffering from this is simply excluded from
the minimization process of solving an underdetermined system. Actually, this
could be also done if value of µnKL exceeds a prescribed limit.

3.5. Final remarks on error estimation

The method with self-equilibration of residuals [18] is more expensive then
the procedure of Demkowicz et al. [26]. The computational cost of the method
of Ainsworth and Oden is estimated in [27]. The cost of self-equilibration is
actually proportional to the number of vertex nodes in the mesh Nv and it boils
down to solving the systems of equations of dimension nf , a number of walls
meeting at vertices, compare Eq. (3.23). This cost is 1/3Nvn

3
f (for a regular

hexahedral mesh we have nf = 12). The remaining cost of self-equilibration can
be comparable as in computation of the Demkowicz et al. method – computing
flux jumps. However, the major difference is in the dimension of the residual
equations being solved, i.e., Eqs. (3.7) and (3.12). The first is of the dimension of
MK : (p+1)3−p3 = 3p2 +3p+1 while the second: (p+2)3 (the dimension of the
enriched element space). Thus we have the order of p difference. Having said this,
we remark that both procedures can be processed in parallel which makes them
very inexpensive.

The ratio of the estimated global error and the actual error |u − uh|1,Ω,
known as an effectivity index, is found in the following numerical tests using for
comparison the solutions on meshes of the order p = 3. These effectivity indices
and global error indicators were listed in Appendix A.

4. Numerical examples for regular meshes

In this section we start presenting numerical tests illustrating the practical
performance of the error estimation techniques. We select typical examples: pres-
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surization of a tube and bending of a body with re-entrant corners. First we show
the performance on regular finite element grids. In our interest is exclusively the
displacement part of the error, as the pressure contribution requires much less
effort (explicitly: ph and Ψ′vol(Jh) in (3.3), with Jh = detF (uh), result from the
FE analysis [23, 24]).

We are interested in comparing the quality of the error estimation methods.
As a measure of their compatibility we evaluate the correlation coefficients for
the subsequent pairs of techniques. We consider this investigation informally as it
rather characterizes statistical phenomena, not determined problems. The tables
of the correlation coefficients are posted in Appendix A.

Pressurisation of a tube

We consider a tube of the internal radius rin = 3.13, thickness t = 0.744 and
height h = 10. It occupies 90◦ in the circumferential direction. The tube is made
of elastic material with κ = 100 000, µ = 2.536 · 10−3 and c = 0. It is clamped at
the bottom and we impose no-penetration condition at the top and side bound-
aries. It is loaded with an internal pressure p = 0.4 ·10−3. Figures 3 a–c show the
displacements uz and ur and distribution of the effective stress σ0 on the sur-

a) b) c)

d) e) f)

Fig. 3. Pressurization of a tube. Solution: a) uz, b) ur, c) σ0. Errors: d) Ainsworth/Oden,
e) Ladevéze/Maunder, f) Demkowicz et al.
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face of deformed configuration. In Figs. 3 d–f we present the distribution of error
indicators obtained with the self-equilibration technique with Ainsworth/Oden,
Ladevéze/Maunder methods and the Demkowicz et al. procedure.

Bending of “tire tread”

In our next example we consider the specimen whose vertical cross-section
forms a T-shape domain. Such a shape is typical for testing adaptivity as it
displays high stress concentration in the re-entrant corners (for linear elasticity
one observes singularity at these corners). For convenience we call it “tire tread”. Its
base is a cuboid of horizontal dimensionsL = 6.0 andD = 3.0, and height h = 1.0.
The upper part, in the yz-plane cross-section is a square of dimension a = 1.0.
In the xy-plane it forms two cylinders of radii rin = 2.5, rex = 3.5, and concave
in the negative and positive y-directions. The “tire tread” is clamped on the bottom
of its base and the remaining boundary is free. The material data are as in the
previous example. We put the load of t̂y = 0.3 · 10−3 on the upper-most surface.

Figure 4a shows the displacement uy on the deformed configuration. The
remaining Figs. 4b–d present the distribution of error estimates.

a) b)

c) d)

Fig. 4. “Tire tread”. a) solution uy (on deformed configuration). Errors: b) Ainsworth/Oden,
c) Ladevéze/Maunder, d) Demkowicz et al.
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Pressurisation of an irregular tube
In our third example we consider a cylindrical tube with three bumps which

make their geometry irregular. The inner radius of the tube rin = 0.5756, the
thickness t = 0.2718 and height h = 2.1. The tube occupies the angle of 90◦

in the circumferential direction. The tube is subject to no-penetration boundary
conditions on bottom, top and side walls. The material data are as before. The
loading internal pressure is p = 0.4·10−3. We delay presentation of characteristics
of the solution until we show the solution on an adaptive mesh (see Fig. 11). Here
we just present the distribution of the three error estimates which are presented
in Fig. 5.

a) b) c)

Fig. 5. Irregular tube. Errors: a) Ainsworth/Oden, b) Ladevéze/Maunder,
c) Demkowicz et al.

5. Generalization for constrained meshes

In this section we discuss generalization of self-equilibration procedures for
constrained meshes. The term “constrained” comes from the fact in the adapta-
tion process selected subdivision of elements create the situations where smaller
elements are attached to the larger neighbors, with the assumption that the ratio
of their sizes does not exceed 1 : 2 (when we limit ourselves to 1-irregular meshes).
In order to satisfy continuity of approximation one has to modify the shape func-
tions and the degrees-of-freedom (dof) of the smaller elements so that they would
coincide with those of the larger elements. Such a procedure in the adaptive
code is fully automatic and it boils down to the following linear transformation
between the standard degrees-of-freedom ui and shape functions ψi and their
constrained counterparts Ui and Ψi:

(5.1) Ψi =
∑
j

Rijψj and ui =
∑
j

UjRji,
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where ranges of indices j are adequately limited to the shape functions or dof
involved in the constraints. More precise discussion of constrained approximation
is presented in Appendix B. Figure 6 shows an example of a smaller element
attached to larger neighbors and values of shape function assuming value 1 at the
vertex in the back, and vanishing at the remaining 7 constrained vertices (marked
in black), i.e., those affecting trilinear approximation in a smaller element. These
constrained vertices are located on sides of the larger neighbors, even outside
of the strict domain of the smaller element. Can the self-equilibration procedure
be applied in such situations?

Ψi =
∑
j

RijΨj

Fig. 6. Illustration of a constrained shape function Ψi associated with a central vertex node.
Coefficients Rij expressing the constrained shape function Ψi by ordinary shape functions ψj

are found automatically for every element. Actual vertices, i.e., those which contain the
unconstrained degrees-of-freedom (dofs), are marked as •, while the hanging (constrained)
vertices are marked as ◦. Dofs of hanging vertices are constrained by dofs of actual vertices,

see Appendix B.

Equilibration for Ladevéze/Maunder procedure
Let us first discuss the Ladevéze/Maunder algorithm for which the 3D con-

strained case was considered by Rachowicz [20]. Let us take into account all
constrained vertices of a smaller element as in Fig. 7, where they are marked as
black circles • while the hanging vertices are denoted as ◦. Focusing our atten-
tion on one of constrained vertices we first generate a patch of attached elements
as a collection of elements where the constrained global shape function associ-
ated with this vertex is nonzero. Then we identify all the faces of elements which
are internal of the patch (i.e., not on its boundary). For a selected element K
we can write the definition of GnK using the constrained shape function Ψn

K :

(5.2)
∫
∂K

θK(s)Ψn
K(s) dS = GnK ,
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where

(5.3) GnK = BK(uh,Ψ
n
K)− LK(Ψn

K)−
∫
∂K

t̄KΨn
K dS,

i.e., ordinary shape functions ψnK were replaced by constrained Ψn
K . We still have

the property that Σ8
n=1Ψn

K(x) = 1 for constrained functions. We also change
accordingly the parameter gn,fK :

(5.4) gn,fK =

∫
f

θKΨn
K dS,

and it yields the equation:

(5.5)
∑

f∈supp(Ψn)

gn,fK = GnK ,

where we used the support of a constrained global shape function. Obviously, the
number of internal faces of elements exceeds the number of elements in the patch.
Therefore, one can solve the above prolongation condition as an underdetermined
system which results in parameters gn,fK . However, we would have a problem if we
try to go back to coefficients θfm: we have 4 parameters for each face, and there
can be more than 4 constrained shape functions defining solution on some faces
of the smaller element. The example of such a face is shown in Fig. 7a, where the
solution depends on 7 constrained vertices. On the other hand, for some faces
the solution depends only on 4 vertices, see Fig. 7b. So what can we do?

Simply we can utilize the fact that the number of internal faces of the patch
exceeds the number of elements in the patch, and we can exclude such faces from

a) b)

7 vertices 4 vertices

Fig. 7. Constrained faces where value of approximation depends on: a) values in 7 vertices •
– should be excluded in the algorithm, b) values in 4 vertices • – should be included in the

algorithm, (we mark by ◦ the “hanging” vertices).
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solving the underdetermined system: it just boils down to erasing the appropriate
column in the system corresponding to that shown in Fig. 2.

The number of faces that are left out still exceeds the number of elements
in the patch (if not – it would alarm us – but it never happens). The solution
that we propose leaves the flux on such (excluded) faces uncorrected from their
initial value: as the average between the elements.

Equilibration for Ainsworth/Oden procedure
As far as the method of Ainsworth/Oden is concerned we notice that the

procedure can be formulated with constrained shape functions without any mod-
ification. The proof that the resulting element residual is self-equilibrated, shown
in paper [18], uses the fact that both, ordinary and constrained shape functions
sum up to 1:

(5.6)
8∑

n=1

ψnK(x) = 1 and
8∑

n=1

Ψn
K(x) = 1.

This means that replacing ordinary shape functions φnK for unconstrained meshes
by constrained shape functions Ψn

K for adaptive meshes results in self-equilibra-
tion of element residuals. (This fact perhaps was not explicitly stated in papers
[18, 27] but it was expressed by the illustrating figures).

Figure 8 presents a general structure of the algorithm of self-equilibration
for both, Ainsworth and Oden [18] and Ladevéze and Maunder [19] pro-
cedures.

for vert=1,8 ! main loop through vertices
find elements attached to vert, list(1:nrel)

for i=1,nrel ! loop through elements in patch to collect faces
for wall=1,6

collect and classify faces attached to vert
endfor wall

endfor i

for i=1,nrel ! loop through elements to generate system of equations
find augmented residual of element Gn

K

for wall=1,6
build equation for face Ai,j

endfor wall
endfor i

solve system of eq. for di (or µKL)
endfor vert

Develop equilibrated residual rK
Solve Neumann problem for φK
Evaluate error eK

Fig. 8. An algorithmic representation of the procedure of self-equilibration.
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6. Numerical examples for 1-irregular meshes

In this section we present the numerical examples for h-adaptive meshes.
In case of the “tire tread” example we applied 2 levels of h-refinements based
on the Demkowicz et al. error indicators. The refined mesh and the deforma-
tion together with displacement uy are shown in Fig. 9a. The remaining pan-
els b, c and d of this figure present the distribution of the three error indi-
cators. One can see quite significant resemblance of the first two of them and
some departure in the Demkowicz et al. We also present the rate of convergence
for the solutions on adaptive meshes in Fig. 10. We display the H1-seminorm
of the error obtained by comparing the adaptive solutions with the solutions on
the meshes of the order p = 3.

a) b)

c) d)

Fig. 9. “Tire tread”. a) solution uy. Errors: b) Ainsworth/Oden, c) Ladevéze/Maunder,
d) Demkowicz et al.

In Fig. 11 we show some characteristics of the solution of the pressurized
irregular tube: displacements ur, uθ and pressure p, on the deformed config-
uration. The distributions of error indicators corresponding to three investi-
gated techniques are presented in Fig. 12. We observe a general resemblance



514 W. Rachowicz, A. Zdunek

Fig. 10. “Tire thread”. Convergence of the H1-seminorm error for the h-adaptive meshes.

of these distributions. The range of magnitude of these error indicators is much
less then in the “tire tread” problem as there is no such significant stress con-
centration as in that case. In Fig. 13 the rate of convergence is presented for
the solutions on adaptive meshes. The H1-seminorm of the error is obtained
as before by comparing with adaptive solutions with those obtained on the en-
riched meshes.

a) b) c)

Fig. 11. Irregular tube. Solution components: a) ur, b) uθ, c) pressure p
(on deformed configuration).
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a) b) c)

Fig. 12. Irregular tube. Errors: a) Ainsworth/Oden, b) Ladevéze/Maunder,
c) Demkowicz et al.

Fig. 13. Irregular tube. Convergence of the H1-seminorm error for the h-adaptive meshes.

7. Application for anisotropic elasticity

We can also apply the presented error estimation techniques for more general
models such as anisotropic finite elasticity. We discuss here the application to an
elasticity model in which the anisotropy results from the reinforcement by two
stiff families of fibres. Such a model was presented by Zdunek and Rachowicz
in [8]. We briefly outline this approach. For details we direct the reader to this
paper.
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7.1. Anisotropic elasticity

The reinforcing families are represented by the two fibre directions:

(7.1) GF (X), |GF | = 1, F = 1, 2,

sometimes called preferred directions. They define two structural tensors:

(7.2) AF := GF ⊗GF (no sum), F = 1, 2.

Apart from the defined before invariants I1, I2 and I3 we now define the joint
invariants of C and AF , namely I4, . . . , I8:

(7.3) I4 = C : A1, I5 := C2 : A1,
I6 = C : A2, I7 := C2 : A2, I8 := G1 ·CG2(G1 ·G2).

The strain energy can be expressed by the whole set of invariants Ψ(I1, . . . , I8).
If contribution to the strain energy corresponding to I4, . . . , I8 dominates the
contribution of I1, I2, I3 the material is nearly inextensible in the preferred
directions. In such a case application of just displacement formulation of the
finite element method may cause danger of numerical locking and oscillations
analogous as for nearly incompressible materials.

To obtain the resulting constitutive relations it is convenient to express the
kinematics in convected coordinates. We define the direction orthogonal to fibres:

(7.4) G3 := G1 ×G2/|G1 ×G2|.

We consider curvilinear co-ordinates X = X(ξA) generating the basis:

(7.5) {GA}, A = 1, 2, 3 : GA = ∂X/∂ξA,

and its dual 〈GA,GB〉 = δAB, A,B = 1, 2, 3. Convected spatial coordinates are
generated by a parametrization:

(7.6) x = x(ζa), ζ = ξ : ga = ∂x/∂ζa, 〈ga, gb〉 = δab , ({ga} – dual basis).

The deformation gradient F , its adjoint F ∗ and their inverses take the form:

(7.7)
F = δaAga ⊗G

A, F−1 = δAaGA ⊗ ga,
F ∗ = δaAG

A ⊗ ga, F−∗ = δAa g
a ⊗GA.

The material and spatial metric tensors GAB = GA ·GB and gab = ga ·gb are
expressed as follows:

(7.8) G = GABG
A ⊗GB and g = gabg

a ⊗ gb.
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Finally, the right Cauchy–Green deformation tensor takes the form:

(7.9) C = F ∗gF , C = δaAδ
b
BgabG

A ⊗GB.

In turn, the invariants of C and joint invariants of C and AF , F = 1, 2, can be
written as:

(7.10)

I1 = 〈G−1C, I〉, I2 = 〈cof(C)G, I〉, I3 = det(G−1C),

I4 = 〈C,A1〉, I5 = 〈C2,A1〉,
I6 = 〈C,A2〉, I7 = 〈C2,A2〉, I8 = G1 ·G2 〈C,G1 ⊗G2〉.

Stretches along GF , F = 1, 2, 3 take the form:

(7.11) λF = (gF · gF )1/2 = 〈C,AF 〉1/2,

and direction cosines between gF , F = 1, 2, 3 can be expressed as follows:

(7.12) αFG = (gF · gG)(λFλG)−1.

Finally, components CFG = gF · gG in terms of λF and αFG take the form:

(7.13) C =

 λ
2
1 α12λ1λ2 α13λ1λ3

• λ2
2 α23λ2λ3

• • λ2
3


AB

GA ⊗GB.

We postulate a separate approximation of stretches along G1 and G2:

(7.14) λF = λ̃F , F = 1, 2.

We perform the change of variables: the Cauchy–Green tensor is expressed in
terms of αFG, λ̃1, λ̃2 and λ3:

(7.15) C̃ = C̃(C, λ̃1, λ̃2) =

 λ̃
2
1 α12λ̃1λ̃2 α13λ̃1λ3

• λ̃2
2 α23λ̃2λ3

• • λ2
3


AB

GA ⊗GB.

The augmented energy with the Lagrange multipliers %̃1, %̃2 corresponding to
the constraints λ̃F = λF (C), F = 1, 2 take the following form:

(7.16) Ψ = Ψ̃(C̃, λ̃1, λ̃2;A1,A2)−
2∑

F=1

%̃F [λ̃F − λF (C)].

Since C̃(C, λ̃F ) ≡ C for λ̃F = λF , F = 1, 2, we have:

(7.17) Ψ̃(C̃, λ̃1, λ̃2;A1,A2) = Ψ(C;A1,A2).
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The Clausius–Plank law 1
2Ċ : S − Ψ̇ = 0, the assumptions above, and the

Coleman–Noll procedure result in the following constitutive relations:

(7.18)



S =
∑2

F=1 %̃
Fλ−1

F AF + S̃,

S̃ = ĨP

[
2
∂Ψ̃

∂C̃

]
, with ĨP :=

[
∂C̃

∂C

]∗
,

%̃F =
∂Ψ̃

∂λ̃F
.

A particular selection of the strain energy function Ψ follows the suggestions of
Balzani et al. [35], and Simo and Pister [36]:

(7.19)


Ψ =

9
Ψ (C) + ~ΨF (λ̃F ),

9
Ψ=

1

2
Λ[ln J̃ ]2 − µ ln(J̃) +

µ

2
(Ĩ1 − 3) +

1

2
Φ
∑
F

(K̃1,F − 1)2,

~ΨF (λ̃F ) =
1

2
Γ(λ̃2

F − 1)2,

where K̃1,F = Ĩa − λ̃2
F Ĩ1 + Ĩ2, a = 2F + 3, and Ĩa = Ia(C̃), a = 1, . . . 8, µ is the

shear modulus, and Λ, Φ, Γ are the material parameters.
A mixed Hu–Washizu type formulation takes into account the equilibrium,

weak enforcement of separately approximated stretches λ̃F , and weak enforce-
ment of constitutive relation for ρ̃F : find u ∈ û + V, λ̃F ∈ Q, %̃F ∈ Q,F = 1, 2
such that:

(7.20)



∫
Ω

1

2
(F T∇v + ∇TvF ) : S dV =

∫
Ω

b̂ · v dV +

∫
ΓN

t̂ · v dS, ∀v ∈ V,∫
Ω

(λF (C)− λ̃F )δ%̃F dV = 0, ∀δ%̃F ∈ Q,∫
Ω

(%̃F − ∂Ψ̃/∂λ̃F )δλ̃F dV = 0, ∀δλ̃F ∈ Q.

The spaces V and Q and their finite element counterparts are the same as defined
in Eqs. (2.11) and (2.12). Variables λ̃F and %̃F can be eliminated at the element
level by static condensation.

7.2. Numerical examples for anisotropic elasticity

In this section we present example solutions and the corresponding errors
for bodies enforced by two families of fibres. We use the geometries identical as
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before though there are different properties of the medium and different loads.
As before we are exclusively interested in the errors in displacements.

Pressurization of an anisotropic tube
We assume that the tube is enforced by the two families of fibres which

constitute two helical spirals inclined at the angle of θ = 64◦ to the horizontal
plane. The material data are as follows:

(7.21) µ = 10, Γ = 1000, Λ = 660.00, Φ = 10.

The internal pressure is p = 13.33. The characteristics of the solution: displace-
ments uz, ur and the effective stress σ0, are presented in Fig. 14a–c. The error
indicators corresponding to the three methods are displayed in Fig. 14d–f.

a) b) c)

d) e) f)

Fig. 14. Pressurization of a tube, anisotropic elasticity. Solution: a) uz, b) ur, c) σ0.
Errors: d) Ainsworth/Oden, e) Ladevéze/Maunder, f) Demkowicz et al.

Bending of an anisotropic “tire tread”
In this case the fibres are located in the yz-plane (see the direction of axis

below the color scale). They are inclined at the angle of θ = 45◦ with respect
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to the positive and negative y-axis, respectively. The material data are as in the
previous example. The load acts on the upper surface in the y-direction, t̂y = 0.5.

In Fig. 15 we present the solution on the h-adaptive mesh with 2 levels of
refinements. The solution characteristics include: displacements uy, the effective
stress σ0, and fibre tensions ρ1 and ρ2. These figures seem to manifest the resis-
tance of the fibres against the loading force. The distribution of error indicators is
shown in Fig. 16. We can observe relative resemblance of the estimates, especially
the two equilibration errors. The convergence is displayed in Fig. 17, where the
H1-norm of the error was determined by comparing the current solutions with
solutions found on meshes of the enriched order p = 3.

a) b)

c) d)

Fig. 15. “Tire tread”, anisotropic elasticity. Solution on h-adaptive mesh:
a) uy, b) σ0, c) ρ1 and d) ρ2.

Irregular tube with anisotropy

In our third example we put different enforcing fibres in two layers of the
tube: we mimic the structure of an aorta with an internal layer called media and
the external one – adventitia. Their thickness is t1 = 0.1685 and t2 = 0.1033.
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a) b)

c)

Fig. 16. “Tire tread”, anisotropic elasticity. Errors: a) Ainsworth/Oden,
b) Ladevéze/Maunder, c) Demkowicz et al.

Fig. 17. Anisotropic “tire thread”. Convergence of the H1-seminorm error
for the h-adaptive meshes.
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In the media the fibres constitute two helical spirals inclined at the angle of
θ = 20◦ to the horizontal plane, in adventitia the spirals are inclined at the
angle of θ = 64◦. The material data of the adventitia are such as in Eq. (7.21),
while in media they are as follows:

(7.22) µ = 20, Γ = 1000, Λ = 653.33, Φ = 20.

Such data are typical for a rabbit carotid artery. The load of internal pressure
is p = 13.33. The solution on an h-adaptive mesh with 3 levels of refinements is
presented in Fig. 18, where displacements in the radial ur and circumferential
direction uθ are displayed, and the effective stress σ0 is shown.

In Fig. 19 we show the distribution of errors for the h-adaptive mesh. We
can see better resemblance of equilibrated residual estimates than the remaining

a) b) c)

Fig. 18. Irregular tube, anisotropic elasticity. Solution on h-adaptive mesh: a) ur, b) uθ,
c) σ0 (on deformed configuration).

a) b) c)

Fig. 19. Irregular tube, anisotropic elasticity. Errors on h-adaptive mesh:
a) Ainsworth/Oden, b) Ladevéze/Maunder, c) Demkowicz et al.
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Fig. 20. Anisotropic irregular tube. Convergence of the H1-seminorm error
for the h-adaptive meshes.

ones. We also present the convergence of the adaptive solutions in Fig. 20. The
H1-seminorm error was found as in the previous examples.

8. Summary and conclusions

In this work we presented a study of applying the top-valued error estimation
techniques for the finite element approximation of nonlinear elasticity. We inves-
tigated nearly incompressible media and anisotropic solids enforced by 2 families
of fibres. Both problems require the mixed formulations to maintain stability.

The error estimation methods included the element residual implicit method
of Demkowicz et al. [26], also proposed by Bank and Weiser [34], and the
method of self-equilibrated residuals due to Ainsworth and Oden [18]. The last
algorithm was investigated with two versions of self-equilibration procedures: the
one invented by Ainsworth and Oden [27] and the approach due to Ladevéze
and Maunder [19]. The error estimates procedures work for general grids of
hexahedral elements. They allow for, so called, 1-irregular meshes which result
from selective refinement of elements. We presented the details necessary for
generalisation of the Ladevéze and Maunder method for 1-irregular meshes in 3D.

Our numerical experiments indicate that the three methods of error esti-
mation result in very close error indicators for the initial, regular meshes for
isotropic problems. This similarity deteriorates a little for 1-irregular meshes.
Such conclusion seems not to be true for anisotropic elasticity. In this case we
observe that the element residual method results in estimates which are less
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similar than both self-equilibrated residual procedures. One might suspect that
the anisotropic solutions are much tougher to approximate.

Appendix A

The coefficient of correlation is defined as follows:

(A.1) ρxy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

SxSy
,

where x̄ and ȳ the average values of variables xi and yi:

(A.2) x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi,

and Sx and Sy are the standard deviations:

(A.3) S2
x =

1

n

n∑
i=1

(xi − x̄)2, S2
y =

1

n

n∑
i=1

(yi − ȳ)2.

Below we present the tables of correlation coefficients for subsequent pairs of
error estimation techniques, and for different meshes (denoted as h0-the initial
mesh, h1-adaptive mesh of 1st level, etc.).

Let us denote the element error indicators ηA/Oi of Ainsworth/Oden, ηL/Mi of
Ladevéze/Maunder, and ηD/Bi of Demkowicz et al. (and Bank/Weiser), where i is
the element number, i = 1, . . . , n, and n is the number of elements in the mesh.
Then in Tables 1 and 3 we have:

in the first column: xi = η
A/O
i , yi = η

L/M
i , correlation is listed,

in the second column: xi = η
A/O
i , yi = η

D/B
i , correlation is listed,

in the third column: xi = η
D/B
i , yi = η

L/M
i , correlation is listed.

Table 1. Correlation between the errors, isotropic elasticity.

Problem Mesh Ainsworth/Oden Ainsworth/Oden Demkowicz et al.
Ladevéze/Maunder Demkowicz et al. Ladevéze/Maunder

Tube straight h0 0.99 0.95 0.94

“Tire tread”
h0 0.99 0.89 0.89
h1 0.96 0.75 0.83
h2 0.93 0.57 0.72

Tube irregular

h0 0.96 0.89 0.88
h1 0.87 0.64 0.82
h2 0.93 0.70 0.77
h3 0.91 0.67 0.74
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Table 2. Error indicators and effectivity indices, isotropic elasticity.

Problem Mesh
Ainsworth/Oden Ladevéze/Maunder Demkowicz et al.

error ind. eff. index error ind. eff. index error ind. eff. index
Tube straight h0 2.98e-3 2.51e-2 3.20e-3 2.04e-2 3.20e-3 2.02e-2

“Tire tread”
h0 1.78e-4 12.26e-3 3.07e-4 2.49e-3 3.04e-4 2.43e-3
h1 1.97e-4 2.20e-3 2.34e-4 2.60e-3 2.37e-4 2.63e-3
h2 1.50e-4 2.22e-3 2.33-4 2.60e-3 1.77e-4 2.64e-3

Tube irregular

h0 1.69e-4 1.86e-3 1.82e-4 2.01e-2 8.48e-5 9.38e-3
h1 7.56e-5 1.48e-2 7.96e-5 1.56e-2 1.33e-5 2.62e-3
h2 1.26e-4 4.32e-2 1.19e-4 4.07e-2 1.79e-5 1.63e-2
h3 4.20e-5 2.64e-2 4.42e-5 2.78e-2 2.40e-6 1.51e-3

Table 3. Correlation between the errors, anisotropic elasticity.

Problem Mesh
Ainsworth/Oden Ainsworth/Oden Demkowicz et al.

Ladevéze/Maunder Demkowicz et al. Ladevéze/Maunder
Tube straight h0 0.99 0.94 0.94

“Tire tread”
h0 0.90 0.71 0.68
h1 0.84 0.66 0.63
h2 0.85 0.65 0.64

Tube irregular

h0 0.60 0.49 0.47
h1 0.73 0.61 0.46
h2 0.78 0.62 0.52
h3 0.81 0.55 0.44

For the 2 sets of quantities correlation becomes 1 if they grow linearly to-
gether, correlation is 0 if they are not correlated (they fill uniformly a circle on
a 2D plane, for instance). So the closer coefficient of correlation is to 1, the closer
two error estimates are indication of elements with the larger error which should
be a subject of adaptation.

We note excellent correlation for initial meshes (h0) and some deterioration
for adaptive meshes. In general it is quite satisfactory.

For strongly anisotropic elasticity we observe good correlation between the
self-equilibrating residuals estimates (with different techniques for the equilibrat-
ing algorithm). Moreover, it grows with the level of refinements. The correlation
is much lower considering the Demkowicz et al. method. It suggests that these
problems are much more difficult to approximate and adequate refinement is
needed to reach the asymptotic behaviour, and that the simple residual tech-
nique does not cope with such problems very well.

In Tables 2 and 4 we collected global error indicators and estimated effectivity
indices which are evaluated by comparing the solutions on the actual meshes with
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Table 4. Error indicators and effectivity indices, anisotropic elasticity.

Problem Mesh
Ainsworth/Oden Ladevéze/Maunder Demkowicz et al.

error ind. eff. index error ind. eff. index error ind. eff. index
Tube straight h0 5.23e+1 6.75e+3 4.94e+1 6.23e+3 5.33e+1 6.72e+3

“Tire tread”
h0 1.65e+0 20.3e+0 1.86e+0 2.30e+1 1.03e+0 2.50e+1
h1 1.42e+0 2.32e+1 1.82e+0 2.97e+1 2.14e+0 3.47e+1
h2 1.05e+0 1.98e+1 1.37e+0 2.57e+1 1.68e+1 3.17e+1

Tube irregular

h0 6.50e+1 9.95e+2 3.56e+1 5.46e+2 6.26e+1 8.56e+1
h1 2.86e+1 5.47e+2 3.56e+1 5.46e+2 526e+1 9.58e+2
h2 4.20e+1 9.95e+2 3.17e+1 7.52e+2 1.95e+1 4.65e+2
h3 9.74e+0 3.22e+2 9.77e+0 3.22e+2 3.35e+0 1.17e+2

solutions on enriched meshes to p = 3. We observe that the effectivity indices
depend on the problem being considered as it is anticipated by the paper of
Brink and Stein [23].

Appendix B. Constrained approximation

We consider a basis of polynomials Φi(ξ), i = 1, . . . , p + 1 of the order p on
a unit domain [0, 1] which with appropriate numbering satisfy the conditions:
Φ1(0) = 1, Φ1(1) = 0 and Φ2(0) = 0, Φ2(1) = 1, and the remaining vanish in
ξ = 0 and ξ = 1. The restriction of such polynomials to ξ ∈ [0, 1/2] can be
expressed by the same basis φi(ξ) = Φi(ξ), i = 1, . . . , p + 1 with a nonsingular
matrix {rij}p+1

i,j=1 as they span the same space:

(B.1) Φi(ξ/2) =

p+1∑
j=1

rijφj(ξ), ξ ∈ [0, 1].

The matrix rij depends solely on the selected kind of polynomials. It could be
found, for instance, by demanding satisfaction of Eq. (B.1) at p + 1 distinct
points in the interval ξ ∈ [0, 1].

We consider the shape functions of hexahedral element as a tensor product
of 1D polynomials Φi:

(B.2) Ψijk(ξ1, ξ2, ξ3) = Ψi(ξ1) ·Ψj(ξ2) ·Ψk(ξ3),

i, j, k ∈ 1, . . . , p+ 1, ξ1, ξ2, ξ3 ∈ [0, 1].

Now let us consider a 3D situation depicted in Fig. 21, where the smaller
hexahedral element of the size 1/2 is adjacent to its larger neighbor – the hexa-
hedral element of the dimension 1. Assume that the common side of the smaller
element occupies the quarter [0, 1/2]2 of the larger element.
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Fig. 21. Smaller neighbor K constrained by the larger element L through the common side;
η1 = 2ξ1, η2 = 2ξ2.

Now we consider the shape functions of both elements restricted to the com-
mon side. They can be expressed as:

(B.3)
Ψij(ξ1, ξ2) = Φi(ξ1) · Φj(ξ2),

ψij(η1, η2) = φi(η1) · φj(η2).

According to (B.1) we can express Ψij as follows:

(B.4) Ψij =

p+1∑
k=1

p+1∑
l=1

(rikφk · rjlφl) =

p+1∑
k=1

p+1∑
l=1

(rikrjl · φkφl).

Introducing numbering with single indices:

(B.5) I = (i− 1) · (p+ 1) + j, K = (k − 1) · (p+ 1) + l,

and notation:

(B.6) rikrjl = RIJ ,

we can write

(B.7) ΨI =

(p+1)2∑
J=1

RIJψJ .

Analogous relations can be established between the edge functions of elements
L and K depicted in Fig. 22, though involving directly Eq. (B.1).

We can collect the formula like (B.7) for all faces (and edges) of the small
element adjacent to its larger neighbors, and in this way express the functions ΨI

which match the functions of the larger neighbors. It turns out that some of such
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Fig. 22. Smaller neighbor K constrained by the larger element L through the common edge.

equations are redundant (appear more than once), so they must be eliminated.
In this way we obtain the formula (5.1a). The relation for the dofs (5.1b) is
obtained keeping in mind that dofs are the dual functionals to shape functions
(Ciarlet [37]), so they can be expressed by the transpose matrix. Actually,
the latter relations can be written in the form avoiding the mentioned above
redundancy, in a closed formula:

(B.8) uk =

NC(k)∑
i=1

UL(i,k)Rik, k = 1, . . . , ndofs,

where, ndofs is a number of degrees-of-freedom of the smaller element, NC(k) is
a number of dofs of larger neighbors constraining dof uk, L(i, k) stands for indices
of these constraining dof, i = 1, . . . , NC(k). The algorithm expressing (B.8), and
its transpose version for shape functions has the form as in Fig. 23.

uk = 0, k = 1, . . . , ndof
for k = 1, . . . , ndof

for i = 1, NC(k)
uk := uk + UL(i,k)Rik

endfor i
endfor k

Ψi = 0, i = 1, . . . , ndof
for k = 1, . . . , ndof

for i = 1, . . . , NC(k)
ΨL(i,k) := ΨL(i,k) +Rikψk

endfor i
endfor k

Fig. 23. Algorithms for evaluating unconstrained dofs uk and constrained shape
functions Ψi.
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