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The paper deals with the notion of stability for thermo-elastoplastic ma-
terials undergoing large strains. The stability analysis is performed by using the
perturbation approach applied to a comprehensive material model derived in a ther-
modynamic format. As the main contribution of this paper a stability condition
for a material model incorporating geometrical and material non-linearities under
full thermo-mechanical coupling, without typical simplifying assumptions, is derived,
and a hybrid analytical-numerical verification of the stability condition at a material
point is investigated for the three-dimensional case. Special emphasis is placed on the
quasi-static case, for which a specific stability criterion is derived. The theoretical
analysis is followed by the numerical verification of the obtained condition. The im-
plementation of the model in the finite element method, using the numerical-symbolic
package AceGen, is also presented in the paper. Two representative three-dimensional
examples are solved, namely a cube under simple shear and a plate with imperfec-
tion, subjected to tension. The obtained results reveal that the type of softening, i.e.,
thermal or material softening, has a significant influence on the stability at a material
point level.
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1. Introduction

In classic mechanics, the notion of stability was related to structural
equilibrium. However, already in [1] and [2] the stability of elastic-plastic ma-
terials and uniqueness of solutions were discussed. It was then recognized in [3]
that an unstable response of a material can lead to the loss of ellipticity of the
governing equations (i.e., failure of positive definiteness of the acoustic tensor,
associated with the occurrence of a displacement gradient discontinuity) and to
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localization of deformation in a small part of a considered specimen (e.g., emerg-
ing shear bands). From that moment, the issue of material instabilities and their
theoretical and numerical consequences raised considerable interest and produced
several approaches to preserve the well-posedness of the considered boundary
value problem (BVP), called regularization. It is to be noted that if dynamic
conditions (wave propagation) are considered, material instability can lead to
the loss of hyperbolicity of the initial boundary value problem (IBVP).

A majority of works were concerned with small inelastic deformations and
isothermal conditions. When the numerical simulation of strain localization be-
came one of important issues in computational mechanics, the early considera-
tions on the loss of material stability and well-posedness included [4, 5]. Focus-
ing on the plasticity-related phenomena occurring in metals, finite deformations
and rate dependence were taken into account in [6, 7]. The description of shear
band formation and evolution was covered in [8]. Ellipticity limits were discussed
for instance in [9] for isothermal small strain plasticity. An overview of elastic-
plastic instability problems (including buckling and necking localization) was
provided in [10]. Special interest was devoted to geomaterials (porous materials)
and non-associative plastic flow in, e.g., [11–13].

The issue of regularization of constitutive models and reliable numerical mod-
elling was then the topic of intensive research, see e.g. [14, 15]. Gradient-enhanced
continuum models were considered by many researchers, see also [16, 17]. An
overview regarding aspects of well-posedness, regularization options and selected
applications was provided in [18]. The theories were also built in a finite deforma-
tion context, see for instance [19–22]. Books and lecture notes were then written
on material instabilities, see [23–26], and the research was further advanced in the
book [27]. Instabilities were considered not only in the response of a continuum,
but also for interfaces [28].

There are significantly fewer papers on material instabilities when the depen-
dence of the model on temperature is admitted. With the limiting assumption
of linear kinematics, the problem is considered for instance in [29–31]. Thermo-
inelasticity (in particular plasticity and damage) are discussed in [31] and in some
respect it is a starting point of the research presented in this work. Some other
contributions on thermo-plasticity focus on so-called adiabatic shear bands, see,
e.g., [32–34].

When large strain thermo-elastoplasticity is considered and the models are
derived from thermodynamics, several sources can be listed. Thermo-elasticity
is investigated in [35–37]. Adiabatic conditions in elastic-plastic materials are
considered in [38–40]. Attention is focused on necking in metals in [41].

The analysis of stability is usually performed in one of two ways. The first
approach involves the investigation of wave propagation in the material, see,
e.g., [31, 33, 42], and is applied in this work. The second method is the analysis
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of jump conditions across a discontinuity surface, assuming traction equilibrium
at the surface, see, e.g., [21], and, in the case of coupled problems, continuity of
the heat flux, see [31].

The aim of the current paper is to derive the conditions for the loss of stability
of thermo-elastoplastic material models in the general large deformation format,
by using a thermodynamically consistent approach, and to specify such condition
for the quasi-static conductive case.

The novel aspect of the paper is thus the derivation of the condition for
material stability, which is as general as possible, without simplifications such as
small strains, linear material behaviour or internal adiabaticity (understood
as the absence of conductivity), which are usually adopted in literature. The
derived conditions are original. To the authors’ knowledge, large strain conduc-
tive thermo-plasticity has not been analysed before in the way presented in the
present paper. The advantage of such an approach is that the condition can be ap-
plied for a wide range of material models and can answer the question whether
the thermo-mechanical coupling provides sufficient regularization. Otherwise, the
generated computational results should not be trusted, or an additional regu-
larizing enhancement can be incorporated – for example via an addition of an
averaged (non-local) field of a selected quantity, based on the approach proposed
in [43] and used in, e.g., [44] or [45], or via the application of a gradient plasticity
approach, for instance the one proposed in [46]. However, the main focus of the
paper is not to provide a regularization framework (even though sufficient heat
conductivity can contribute to the regularization), but to provide an indicator
for thermo-plasticity, based, among others, on the acoustic tensor, when material
stability is lost at the local level, i.e., at a material point.

Moreover, the results of theoretical derivations are followed by a numerical
analysis of the fully coupled thermo-elastoplasticity, which is rarely encountered
in literature. For this purpose the thermodynamically consistent material model
is implemented within the symbolic-numerical Finite Element Method (FEM)
environment AceGen/FEM, and this is performed in a way suitable to take
advantage of software capabilities, see [47].

The paper is organized as follows: Section 2 contains preliminaries related to
the basics of kinematics for large strain thermo-plasticity and the general form of
free energy function. Section 3 presents the governing equations for the (I)BVP,
whereas plasticity is briefly described in Section 4. The core section which con-
tains the stability analysis of thermo-elastoplastic material model is Section 5.
Firstly, the general model is considered and, secondly, the quasi-static conduc-
tive case obtained by dropping the inertial term is analysed. Section 6 con-
tains the specification of the thermo-elastoplastic model and its implementa-
tion within FEM. The results of example numerical simulations are described in
Section 7, and Section 8 contains final remarks.
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In the paper the formulas containing vectors or tensors are written in absolute
notation. The definitions of products and derivatives are included in Appendix A.

2. Preliminaries

2.1. Kinematics

Let us assume that vector X denotes the referential placement of a material
particle, and that vector x(X, t) is the current placement at time t of the particle
labelled with X. The absolute temperature is denoted by T . The displacement
vector is defined as the difference

(2.1) u(X, t) = x(X, t)−X.

In further description, the dependence of quantities on the particle referential
placement X and time t is not written directly. The deformation gradient is
defined as usual

(2.2) F =
∂x

∂X
= I +

∂u

∂X
,

where I is the second-order identity tensor.
The kinematics of the analysed thermo-plasticity model is based on the mul-

tiplicative decomposition of the deformation gradient in the following form [48]

(2.3) F = Fr · Fp,

where Fr includes the reversible part of deformation (elastic deformation and
thermal expansion) and Fp represents the plastic part. The reversible part can
be decomposed into elastic and thermal parts

(2.4) Fr = Fθ · Fe.

Assuming isotropic linear expansion, the thermal part of deformation gradient
has the form [41]

(2.5) Fθ = JθI, Jθ = exp(3αT [T − T0])

and the deformation gradient can be expressed in the form

(2.6) F = JθFe · Fp.

The right Cauchy–Green deformation tensor is defined as

(2.7) C = FT · F
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and the elastic right Cauchy–Green tensor is

(2.8) Ce = [Fe]T · Fe.

It can be shown that the right elastic Cauchy–Green tensor can be expressed in
the form

(2.9) Ce = [Jθ]−2[F−p]T ·C · F−p,

where F−p = [Fp]−1.
The velocity of a particle is defined in the classical way

(2.10) v =
∂x(X, t)

∂t
= ẋ,

where the dot over a quantity denotes the material time derivative, see e.g. [49],
and is referred to as the rate of a quantity. This notation is used in the subsequent
derivations. The velocity gradient is

(2.11) l =
∂v

∂x
= grad(v) = Ḟ · F−1.

2.2. Free energy

In this work the Helmholtz free energy for a thermo-elastoplastic material is
assumed to be dependent on deformation gradient F, absolute temperature T
and a vector of internal variables related to plasticity a

(2.12) ψ = ψ(F, T,a).

However, the coupled thermo-elastoplastic problem leads to a two-field formula-
tion consisting of two governing equations: the balance of linear momentum and
the balance of energy with two unknown fields, namely displacement vector u
and temperature T . In order to find the vector of internal variables the plastic-
ity problem is solved at a local level. Thus vector a is indeed dependent on the
fundamental fields, i.e., a(F(u(X, t)), T (X, t)) which implies that:

∂a

∂X
=
∂a

∂F
:
∂F

∂X
+
∂a

∂T
⊗ ∂T

∂X
=
∂a

∂F
:
∂2u

∂X∂X
+
∂a

∂T
⊗ ∂T

∂X
,(2.13)

ȧ =
∂a

∂F
: Ḟ +

∂a

∂T
Ṫ =

∂a

∂F
:
∂2u

∂X∂t
+
∂a

∂T
Ṫ .(2.14)

The vector of internal variables a typically contains the tensor representing
plastic deformation and an equivalent plastic strain measure.
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3. Governing equations

The subsequent derivations presented in this section are standard and can
be found in the literature, e.g., [50, 51].

3.1. The first law of thermodynamics

The first law of thermodynamics, i.e., the energy balance equation, is con-
sidered in the reference configuration

(3.1) ρ0ė−P : Ḟ + Div(q0) = 0,

where ρ0 is the referential density, e is the internal energy per unit of mass in
the reference configuration, P is the first Piola–Kirchhoff stress tensor, q0 is the
Piola–Kirchhoff heat flux density vector and Div(·) denotes the divergence in
the reference configuration. The balance of energy in Eq. (3.1) does not take
into account the external source of heat per unit of mass (or volume).

3.2. The second law of thermodynamics

The second law of thermodynamics states that the energy dissipation D is
always non-negative

(3.2) D = P : Ḟ− ρ0ηṪ − ρ0ψ̇ −
1

T
q0 ·Grad(T ) ≥ 0.

In the above equation η is the entropy per unit of mass in the reference configura-
tion and Grad(·) denotes the gradient of a quantity in the reference configuration.

The rate of the Helmholtz free energy density introduced in Eq. (2.12) is
derived as follows

(3.3) ψ̇ =
∂ψ

∂F
: Ḟ +

∂ψ

∂a
· ȧ +

∂ψ

∂T
Ṫ .

After inserting the above relation into Eq. (3.2) the following inequality is ob-
tained

(3.4)
[
P− ρ0

∂ψ

∂F

]
: Ḟ− ρ0

∂ψ

∂a
· ȧ− ρ0

[
η +

∂ψ

∂T

]
Ṫ − 1

T
q0 ·Grad(T ) ≥ 0.

The following state equations are obtained for the first Piola–Kirchhoff stress
tensor and the entropy:

P = ρ0
∂ψ

∂F
,(3.5)

η = −∂ψ
∂T

.(3.6)
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The reduced form of the second law of thermodynamics is now written as

(3.7) − ρ0
∂ψ

∂a
· ȧ− 1

T
q0 ·Grad(T ) ≥ 0.

By inserting the definition of a thermodynamic force β conjugate to a

(3.8) β = −ρ0
∂ψ

∂a
,

the following inequality is obtained

(3.9) β · ȧ− 1

T
q0 ·Grad(T ) ≥ 0,

in which the two terms are called mechanical and thermal dissipation, res-
pectively:

Dmech = β · ȧ ≥ 0,(3.10)

Dtherm = − 1

T
q0 ·Grad(T ) ≥ 0.(3.11)

The constitutive relation for the heat flux density vector has to be specified.
In this work the simplest relation is assumed, i.e., that the Piola–Kirchhoff heat
flux density vector is proportional to the material gradient of the temperature
field

(3.12) q0 = −K Grad(T ),

where K > 0 is the heat conductivity parameter. Is is assumed that the material
is homogeneous, i.e., K does not depend on X. However, spatial Fourier’s law
can alternatively be incorporated instead, see [52].

For assumed Fourier’s law in Eq. (3.12) the dissipation inequality presented
in Eq. (3.11) is fulfilled.

3.3. Temperature form of energy balance

To derive the temperature form of the energy balance equation the Legendre
transformation is needed

(3.13) ψ = e− Tη,

which implies the following relations:

ψ̇ = ė− Ṫ η − T η̇,(3.14)

ė = ψ̇ + Ṫ η + T η̇.(3.15)
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By inserting Eqs. (3.15), (3.3), (3.5), (3.6), (3.8) and (3.12) into the first law of
thermodynamics (3.1) and by using relation

(3.16) η̇ = − ∂2ψ

∂T∂F
: Ḟ− ∂2ψ

∂T∂a
· ȧ− ∂2ψ

∂T 2
Ṫ ,

the following form of energy balance equation is obtained

(3.17) ρ0cṪ −K Div(Grad(T ))− T ∂P
∂T

: Ḟ︸ ︷︷ ︸
H

− β · ȧ︸︷︷︸
Dmech

+T
∂β

∂T
· ȧ︸ ︷︷ ︸

F

= 0.

In the above formula c denotes the heat capacity per unit of mass defined as

(3.18) c = −T ∂
2ψ

∂T 2
.

The mechanical heat production rate in Eq. (3.17) consists of three compo-
nents. The first is related to thermo-elastic coupling (Gough–Joule effect) and
is denoted H. The second, Dmech, is the heat production due to plastic yielding
and hardening. The third, F , is due to the dependence of thermodynamic forces
conjugated to internal variables on temperature.

By inserting Eq. (2.14) and relation Ḟ = ∂u̇/∂X into the energy balance
equation (3.17) the final form of the energy balance equation, which is used for
ellipticity analysis, has been obtained

(3.19) ρ0cṪ −KDiv(Grad(T ))−
[
T
∂P

∂T
−Qau

]
:
∂u̇

∂X
+ qaT Ṫ = 0,

where

Qau =

[
−β + T

∂β

∂T

]
· ∂a
∂F

,(3.20)

qaT =

[
−β + T

∂β

∂T

]
· ∂a
∂T

.(3.21)

3.4. Balance of linear momentum

The balance of linear momentum is formulated in the reference configuration
neglecting body forces

(3.22) Div(P) = ρ0ü.

Using the dependence P(F, T,a) which results from Eqs. (2.12) and (3.5), it can
be written that

(3.23)
∂P

∂F

...
[
∂F

∂X

]T
+
∂P

∂a
:

[
∂a

∂X

]T
+
∂P

∂T
· ∂T
∂X

= ρ0ü,
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with A·a = a·AT for any third order tensor A and vector a, i.e., [AT]ijk = [A]kij ,
or equivalently

(3.24)
∂P

∂F

...
[
∂2u

∂X∂X

]T
+
∂P

∂a
:

[
∂a

∂X

]T
+
∂P

∂T
· ∂T
∂X

= ρ0ü.

Inserting Eq. (2.13) yields

(3.25)
[
∂P

∂F
+
∂P

∂a
· ∂a
∂F

]
...
[
∂2u

∂X∂X

]T
+

[
∂P

∂T
+
∂P

∂a
· ∂a
∂T

]
· ∂T
∂X

= ρ0ü.

Now the following two tensors are introduced:

D =
∂P

∂F
+
∂P

∂a
· ∂a
∂F

,(3.26)

B =
∂P

∂T
+
∂P

∂a
· ∂a
∂T

.(3.27)

The fourth-order tensor D is called material tangent, whereas B is a second-
order stress-temperature tensor. The final concise form of the momentum balance
equation is

(3.28) D
...
[
∂2u

∂X∂X

]T
+ B · ∂T

∂X
= ρ0ü.

4. Plasticity

In this section the general assumptions of plasticity theory are included,
cf. [31]. The yield function F is assumed to be dependent on internal variables
a, thermodynamic force vector β, conjugated to internal variables, and on tem-
perature T . Thus the yield condition is as follows

(4.1) F (β,a, T ) ≤ 0.

For the plastic flow the following equalities hold

(4.2) F = 0 and Ḟ = 0.

The evolution of internal variables is written as

(4.3) ȧ = λ̇Np,

where λ̇ is a consistency parameter (also denoted as plastic multiplier) and

(4.4) Np =
∂G

∂β
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is derived from plastic potentialG = G(β,a, T ) which, for associated plasticity, is
equivalent to the yield function. The Kuhn–Tucker loading-unloading conditions
are as usual

(4.5) λ̇ ≥ 0 and F ≤ 0 and λ̇F = 0.

5. Ellipticity analysis for large strain thermo-plasticity

5.1. General considerations

The subsequent derivations are based on the perturbative approach which was
adopted for isothermal problems in, e.g., [8] and [12], and for thermo-mechanical
considerations in, e.g., [31] and [35]. In particular, the subsequent analysis can
be treated as an extension of the approach presented in [35] for large strain
thermo-elasticity to thermo-plasticity.

We assume that in the base state the volume element of the material is
uniformly deformed, i.e., u = F̄ ·X −X, where F̄ is the constant deformation
gradient. The temperature in the specimen is then considered to be constant as
well, i.e., T = T̄ .

The following perturbations of the base state are studied:

u = F̄ ·X−X + upert(X, t),(5.1)

T = T̄ + T pert(X, t).(5.2)

It is worth mentioning that the application of Eqs. (2.13) and (2.14) in the
above derivations leads to a formulation based on the primary unknown fields,
i.e., displacement and temperature, so that perturbations are imposed only on
these fields. This is an original approach for thermo-plasticity, whereas in the
literature, e.g., [31], a perturbation is also imposed on the internal variable field.

Now the above relations (5.1) and (5.2) are inserted into the balance of linear
momentum (3.28) and the balance of energy (3.19), respectively. The former
equation leads to

(5.3) D
...
[
∂2upert

∂X∂X

]T
+ B · ∂T

pert

∂X
− ρ0üpert = 0,

where the material tangent D and the stress-temperature tensor B are calculated
for the base state. Proceeding along the same lines for the energy equation (3.19)
results in

(5.4) ρ0cṪ
pert −KDiv(Grad(T pert))−

[
T
∂P

∂T
−Qau

]
:
∂u̇pert

∂X
+ qaT Ṫ pert = 0.
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All quantities in the above equations are calculated for the base state, hence
also temperature T refers to T̄ .

The perturbations superposed on the base state can have the form of expo-
nential harmonic waves. For instance in [53] the following form has been pro-
posed:

upert(X, t) = exp(ikN ·X− iωt)û,(5.5)

T pert(X, t) = exp(ikN ·X− iωt)T̂ ,(5.6)

where i is the imaginary unit, k is the wave number (real and positive),N is a unit
vector (of real coefficients) in the reference configuration related to the direction
of wave propagation, ω is the angular frequency (possibly complex), û and T̂ are
constant amplitudes to be determined (possibly complex).

Inserting relations (5.5) and (5.6) into Eq. (5.3), after making use of deriva-
tions summarized in Appendix B, the following equation for the balance of linear
momentum is obtained

k2D
...[û⊗N⊗N]T − ikB ·NT̂ = k2D

...[N⊗ û⊗N]− ikB ·NT̂(5.7)

= ω2ρ0û,

which can be written in the following form

(5.8)
[
Q− ω2ρ0

k2
I

]
· û− i

k
bT̂ = 0,

where Q is an acoustic tensor:

Q = [I⊗N] : D ·N,(5.9)

Qij = DiJkLNJNL(5.10)

and where vector b is defined as

(5.11) b = B ·N.

Introducing relations (5.5) and (5.6) into Eq. (5.4), after linearization (neglect
the second order term, i.e., the product of amplitudes û and T̂ ) and making use
of derivations gathered in Appendix B, the following equation for the energy
balance is obtained

(5.12) − Tikb̃ · û +

[
ρ0c+

ik2

ω
K + qaT

]
T̂ = 0,
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where

b̃ = B̃ ·N,(5.13)

B̃ =

[
∂P

∂T
− 1

T
Qau

]
=
∂P

∂T
+

[
1

T
β − ∂β

∂T

]
· ∂a
∂F

.(5.14)

Equations (5.8) and (5.12) form a system of equations which can be presented
by using matrix notation

(5.15)

Q− ω2ρ0
k2

I − i
k
b

−Tikb̃ ρ0c+
ik2

ω
K + qaT

 · [ ûT̂
]

=

[
0
0

]
.

The thermo-plastic material is called stable if all solutions û and T̂ of the set
of equations (5.15) are bounded as t → ∞ for every choice of the base state
defined by (F̄, T̄ ), and for every wave number k > 0 and vector N, cf. [35].
The non-trivial solution of system (5.15) is obtained when the determinant of the
coefficients matrix is zero

(5.16) det


Q− ω2ρ0

k2
I − i

k
b

−Tikb̃ ρ0c+
ik2

ω
K + qaT


 = 0.

The amplitudes û and T̂ assumed in Eqs. (5.5) and (5.6) are bounded for t→∞
if

(5.17) Im(ω) ≤ 0.

It can therefore be concluded that the material is stable if the condition in
Eq. (5.16) is fulfilled for every base state F̄ and T̄ , wave number k > 0 and
direction N and when condition (5.17) holds.

A further analysis of the stability condition is now shown. The amplitude T̂
can be derived from Eq. (5.12) as follows

(5.18) T̂ =
Tik

ρ0c+
ik2

ω
K + qaT

b̃ · û,

assuming that the denominator in the fraction is other than 0, and can be inserted
into Eq. (5.8). The reduced set of equations is presented below

(5.19)

[
Q− ω2ρ0

k2
I +

T

ρ0c+
ik2

ω
K + qaT

b⊗ b̃

]
· û = 0.
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The non-trivial solution of the above equation for û is obtained when

(5.20) det

(
Q− ω2ρ0

k2
I +

T

ρ0c+
ik2

ω
K + qaT

b⊗ b̃

)
= 0.

It is mentioned that the same result, i.e., the derivation of Eq. (5.20) from
Eq. (5.16), can be obtained using the formula for the determinant of a block
matrix, see, e.g., [54].

5.2. Quasi-static conductive case

A further analysis is performed for quasi-static conditions which are obtained
owing to the assumption that in the balance of linear momentum (3.28) the
right hand side is zero, so that the term ω2ρ0/k

2I in Eq. (5.20) is dropped, and
Eq. (5.20) reduces to

(5.21) det

(
Q +

T

ρ0c+
ik2

ω
K + qaT

b⊗ b̃

)
= 0.

It can be seen that in the above equation the angular frequency ω appears only
once and is involved in the conductivity term. Note that this term disappears for
the adiabatic model, thus it can be concluded that the presence of heat conduc-
tivity in the material model changes the type of the equation and its analysis.

The next step is performed under the assumption that the elastoplastic ma-
terial tangent is not singular. By application of the formula det(T + αa⊗ c) =
det(T)[1 + αc · T−1 · a], where T is a second order tensor, α is a scalar and
a and c are vectors, Eq. (5.21) can be rewritten as

(5.22) det(Q)

[
1 +

T

ρ0c+
ik2

ω
K + qaT

b̃ ·Q−1 · b

]
= 0.

The above formula can be considered only for the case where the acoustic tensor
Q is non-singular, so it is fulfilled when

(5.23) 1 +
T

ρ0c+
ik2

ω
K + qaT

b̃ ·Q−1 · b = 0.

Now the angular frequency ω is analysed in order to verify the condition from
Eq. (5.17). In this regard, Eq. (5.23) can be rewritten after simple manipulations

(5.24) ω =
−ik2K

ρ0c+ qaT + T b̃ ·Q−1 · b
.
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For real values of the wave number k the angular frequency ω has only the
imaginary part which equals

(5.25) Im(ω) =
−k2K

ρ0c+ qaT + T b̃ ·Q−1 · b
.

Now the condition from Eq. (5.17) is recalled and is applied to Eq. (5.25), which
gives

(5.26) ρ0c+ qaT + T b̃ ·Q−1 · b ≥ 0,

since k2 and conductivity K are always positive. It can be concluded that, for
the quasi-static conductive case, the stability of the material depends on heat
capacity, thermo-plastic coupling (i.e., the dependence of the internal variables
and conjugated forces on temperature is represented by term qaT ), on thermo-
elastic coupling (represented by vectors b̃ and b) and material tangent (used for
the calculation of acoustic tensor Q).

Equation (5.26) can be rewritten in the following form, defining stability
indicator S

(5.27) S = T b̃(N) · [Q(N)]−1 · b(N) + ρ0c+ qaT ≥ 0

to emphasize the dependence of b̃, b and Q on the vector N. The condition
presented in Eq. (5.27) can be investigated numerically by seeking the minimum
value of the first term with respect to the vector N and by verification of the sign
of the minimum value plus heat capacity and qaT . The negative sign of the
expression means that the stability is lost. For classic materials the heat capacity
is positive and thus has a stabilizing effect. On the other hand, the thermo-plastic
coupling term qaT can be negative for example when thermal softening occurs,
which is usually observed for metals.

The stability criterion does not depend straightforwardly on the conductivity.
The value of the conductivity coefficient is absent in the condition presented in
Eq. (5.27). As mentioned above, the presence of the conductive term just changes
the type of the equation to be solved and leads to the condition (5.27).

In the next section the numerical analysis of the above condition is per-
formed. It should be mentioned that from the numerical point of view it makes
no sense to consider the case of singular acoustic tensor det(Q) = 0, which im-
plies that the condition (5.27) cannot be verified. In computer simulations for
discretized time and space the determinant of the acoustic tensor is not the an-
alytical zero. Even when the determinant of the acoustic tensor Q is negative,
the stability condition (5.27) can be fulfilled due to the presence of additional
terms in the equation.
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6. Model specification – large strain thermo-elastoplasticity

6.1. Constitutive relations

The following specific form of the free energy functional is assumed in the
paper

(6.1) ψ(F,a, T ) = ψ̂(F,Fp, α, T )

and thus the internal variables consist of coefficients of the plastic deformation
gradient Fp and the hardening variable α, i.e.,

(6.2) a = {Fp, α}.

In the above equation parentheses {·} denote vectorization of the related quan-
tities, to be specific a = [F p11, F

p
12, F

p
13, F

p
21, F

p
22, F

p
23, F

p
31, F

p
32, F

p
33, α]. Using the

definition of the elastic right Cauchy–Green deformation tensor in Eq. (2.8) and
relation (2.9) the free energy can be rewritten as

(6.3) ψ(F,a, T ) = ψ̃(Ce(F,Fp, T ), α, T ).

The free energy is assumed to be composed of elastic, plastic and pure thermal
parts as follows, cf. [55],

ψ̃ = ψe(Ce) + ψp(α) + ψθ(T ),(6.4)

ψe(Ce) =
1

2ρ0
κ

[
1

2

[
[Je]2 − 1

]
− ln(Je)

]
+

1

2ρ0
G
[
[Je]−2/3 tr(Ce)− 3

]
,(6.5)

ψp(α) =
1

2
Hα2 + [σy∞ − σy0]

[
α+

1

δ
exp(−δα)

]
,(6.6)

ψT (T ) = c0

[
[T − T0]− T ln

(
T

T0

)]
.(6.7)

In the elastic part Je > 0 is the determinant of the elastic deformation ten-
sor Fe. The material parameters in Eq. (6.5) are the bulk modulus κ and the
shear modulus G. The plastic part of free energy (6.6) is assumed in a form com-
posed of linear hardening with hardening modulus H, and saturation hardening
with initial and final yield thresholds σy0 and σy∞, respectively, and saturation
constant δ. Softening can be obtained by using a certain set of parameters (e.g.,
negative value of H). In Eq. (6.7) parameter c0 is the specific heat capacity per
unit of mass for the selected material. The assumed form of the thermal part
of the free energy function implies constant heat capacity derived in Eq. (3.18).

Using Eq. (3.5) the first Piola–Kirchhoff stress tensor can be derived

(6.8) P = ρ0
∂ψ

∂F
= ρ0

∂ψ

∂Ce
:
∂Ce

∂F
= ρ0

∂ψ

∂Ce
:

[
∂Ce

∂C
:
∂C

∂F

]
.
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After manipulations it has the form

(6.9) P = 2
ρ0
Jθ

Fe · ∂ψ
∂Ce

·
[
F−p

]T
.

Introducing the definition of the elastic second Piola–Kirchhoff stress tensor

(6.10) Se = 2ρ0
∂ψ

∂Ce
,

the following form of the first Piola–Kirchhoff stress tensor is obtained

(6.11) P =
1

Jθ
Fe · Se ·

[
F−p

]T ⇒ JθF−e ·P = Se ·
[
F−p

]T
.

Taking into account the definition of β in Eq. (3.8) and assumption (6.2), the
conjugate forces β include

(6.12) β =

{
−ρ0

∂ψ

∂Fp
,−ρ0

∂ψ

∂α

}
= {βp, βα} .

Further derivations yield

(6.13) βp = −ρ0
∂ψ

∂Ce
:
∂Ce

∂Fp
= −ρ0

∂ψ

∂Ce
:

[
∂Ce

∂F−p
:
∂F−p

∂Fp

]
and

(6.14) βp = 2ρ0C
e · ∂ψ
∂Ce

·
[
F−p

]T
= Ce · Se ·

[
F−p

]T
= M ·

[
F−p

]T
,

where M is the (elastic) Mandel stress tensor

(6.15) M = Ce · Se = 2ρ0C
e · ∂ψ
∂Ce

,

which is symmetric in the case of elastic isotropy. Moreover, the definition of the
second conjugate force results in

(6.16) βα = −ρ0
∂ψ

∂α
= − [Hα+ [σy∞ − σy0][1− exp(−δα)]] .

With these relations in hand, the mechanical dissipation according to Eq. (3.10)
reads

Dmech = βp : Ḟp + βαα̇ =
[
M · [F−p]T

]
: Ḟp + βαα̇(6.17)

= M : [Ḟp · F−p] + βαα̇ = M : Lp + βαα̇.
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Furthermore, the yield condition according to Eq. (4.1)

(6.18) F = F (β,a, T ) = F (βp, βα,Fp, α, T ) = F̃ (M, βα, T ) ≤ 0

is assumed in the following specific form

(6.19) F = ‖dev(M)‖ −
√

2

3
σy(α, T ) ≤ 0,

where

(6.20) dev(M) = M− 1

3
tr (M) I, ‖dev(M)‖ =

√
dev(M) : dev(M)

and

(6.21) σy(α, T ) = [σy0 − βα] [1−HT [T − T0]] .

In the model it is assumed that the yield strength is reduced with the increase of
temperature. In Eq. (6.21) symbol HT > 0 denotes the linear thermal softening
modulus.

The evolution of internal variables for associated plasticity according to
Eq. (4.3) is governed by the following equations:

Ḟp = λ̇
∂F

∂βp
= λ̇

∂F

∂M
:
∂M

∂βp
= λ̇

∂F

∂M
· Fp ⇐⇒ Ḟp · F−p = Lp = λ̇

∂F

∂M
,(6.22)

α̇ = λ̇
∂F

∂βα
.(6.23)

Using the yield function from Eq. (6.19) the evolution equations have the
form:

Lp = λ̇
∂F

∂M
= λ̇

dev(M)

‖dev(M)‖
= λ̇Np,(6.24)

α̇ = λ̇
∂F

∂βα
=

√
2

3
λ̇.(6.25)

6.2. Numerical implementation of elastoplasticity

The material model presented in the previous section is implemented within
the FEM by using symbolic-numerical toolboxes AceGen and AceFEM [47] for
Wolfram Mathematica. It should be emphasized that the analysed problem is
highly nonlinear due to large deformations, plastic behaviour, and full thermo-
mechanical coupling, and that the FEM leads to a set of nonlinear equations
which are solved by using the incremental-iterative Newton–Raphson procedure.
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From this point of view, the applied software has the capability of Automatic
Differentiation (AD), which allows the computation of the tangent matrix for
the Newton–Raphson algorithm. This is the most challenging task for advanced
nonlinear models. The AceGen package also has the capability of simultaneous
optimization of expressions immediately after they have been derived, which
results in an efficient code for FEM computations, see [47].

The solution algorithm is developed in a form which takes advantage of the
capabilities of AceGen package, i.e., symbolic notation and AD (with exceptions
when needed, see [47]). The part of the algorithm related to the solution of the
plasticity problem at a Gauss point is based on the approach presented in [56]
and [47], whereas the implementation of a simpler model of thermo-plasticity is
presented in [45].

As mentioned in Section 2.2, the thermo-mechanical problem consists of two
governing equations: the balance of linear momentum and the balance of energy,
with the local forms presented in Eqs. (3.22) and (3.19), respectively. Following
recommendations from [47], for each governing equation a potential (or pseudo-
potential) is formulated in such a way that the variation of the potential is
equivalent to the weak form of the governing equation. In particular, the den-
sity of potential for the balance of linear momentum is the elastic part of the
Helmholtz free energy ψe from Eq. (6.5), whereas the density of pseudo-potential
for the energy balance (3.17) has the following form (using the backward Euler
scheme for a temperature rate with Tn denoting the temperature at the previous
time moment)

(6.26) Π =
1

2
ρ0c

[T − Tn]2

∆t
+

1

2
KGrad(T ) ·Grad(T )− T [Dmech +H−F ].

The two discretized fields in the analysed model are displacements u and
temperature T which are interpolated by using linear shape functions. To avoid
volumetric locking, which can influence the results for incompressible Huber–
Mises plasticity, the so-called F-bar modification proposed in [57] is applied. The
nodal coefficients of the displacement vector for a finite element are included in
the vector uI , whereas the nodal temperatures are gathered in vector TI .

The Gauss point contributions to the residual vector RG = {Ru,RT } are
computed as follows

Ru = wGJXG
∂ψe

∂uI

∣∣∣∣
a=const

(6.27)

and

RT = wGJXG
∂Π

∂TI

∣∣∣∣
a=const,Dmech=const,H=const,F=const

,(6.28)
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where wG is the weight of a Gauss point, JXG denotes the Jacobian of isopara-
metric mapping from the parent element to the element in the reference con-
figuration. The assumption that the heat sources are constant guarantees cor-
rect derivation of the residual vector from the proposed potential (6.26) and is
achieved by the application of AD exceptions, whereas constant internal vari-
ables a prevent the application of nested dependencies calculated in the inner
plasticity loop. The Gauss point contribution to the tangent matrix is computed
by using AD from the formula

(6.29) KG =


∂Ru

∂uI

∂Ru

∂TI

∂RT

∂uI

∂RT

∂TI

 =

[
Kuu KuT

KTu KTT

]
.

The solution algorithm is presented in Box 1.
The important aspect of the elastoplasticity problem is its solution at the

Gauss point level. If the calculation of a trial state results in a plastic state,
see point 3 in Box 1, then the set of nonlinear equations consisting of the yield
condition and the flow rule has to be solved in order to find values of the in-
ternal variables. To keep consequently the analysis in the referential setting the
following algorithm is developed:

The flow rule (6.22) to be solved can be rewritten as

(6.30) Ḟp = λ̇N · Fp

and can be approximated by using exponential mapping discussed in [58]. The
application of formula (45) from [58] for Eq. (6.30) gives

(6.31) Fpn+1 = exp(∆t[λ̇Np]n+1) · Fpn,

where ∆t denotes the time increment and subscripts n and n+1 denote the values
from the previous and the current time step, respectively. In the subsequent
derivations, subscripts n + 1 related to the current step are omitted. Assuming
backward Euler integration with λ̇ = ∆λ/∆t, the above formula is rewritten in
the residual form

(6.32) Fp − exp(∆λNp) · Fpn = 0.

It is worth noting that the solution of the plasticity problem at the level
of a Gauss point, see point 3 in Box 1, can be performed using an alternative
approach presented for instance in [50], including the analysis in principal direc-
tions, which reduces the number of unknowns. However, in the presented model
it is assumed that the vector of internal variables is calculated straightforwardly,
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which allows for the computation of derivatives ∂a/∂F and ∂a/∂T , required to
compute quantities B̃ and qaT in Eqs. (5.14) and (5.27) in an automated man-
ner, cf. [47, Subsection 3.3.1]. This is also mentioned in the last line of point 3
in Box 1. Moreover, the presented framework is already prepared for a possible
extension towards anisotropic plastic flow in future research.

• Current values of fundamental unknowns: vector of nodal displacements uI , vector of
nodal temperatures TI

• Previous values of fundamental unknowns: unI , TnI

• Interpolation using shape functions: u = Nu,I · uI , T = NT,I · TI , un = Nu,I · unI ,
Tn = NT,I ·TnI

• Values of internal variables at Gauss points from previous time step: F−pn , αn
• Loop over Gauss points to calculate contributions to residual vector and tangent matrix:

1. Calculation of trial state:
F from Eq. (2.2), Fθ from Eq. (2.5)
Fe,trial = F−θ · F · F−pn Ce,trial = [Fe,trial]T · Fe,trial
ψe,trial(Ce,trial) from Eq. (6.5)
Mtrial = 2Ce,trial · ∂ψe,trial/∂Ce,trial

F trial(Mtrial, βα(αn), T ) from Eq. (6.19)
2. If F trial < ε then elastic state, Fp = Fpn, α = αn

3. If F trial ≥ ε then plastic state, the following set of equations is solved by Newton’s
method: {

F = 0

Fp − exp(
√

3/2[α− αn]Np) · Fpn = 0

to obtain Fp and α.
When the solution is obtained, the dependencies needed for linearization are included
in quantities:

Fp = Fp
∣∣
∂Fp

∂F
=DFpDF, ∂F

p

∂T
=DFpDT

α = α
∣∣
∂α
∂F

=DαDF, ∂α
∂T

=DαDT

Derivatives DFpDF , DFpDT , DαDF and DαDT are calculated after convergent
step in the inner Newton procedure

4. Calculation of final value of Ce from Eq. (2.9) and free energy function from Eq. (6.5)
5. Calculation of internal heat sources due to thermo-elastic and thermo-plastic couplings

from Eq. (3.17)
6. Calculation of data needed for stability condition (5.27), i.e., B̃ from Eq. (5.14), D from

Eq. (3.26), B from Eq. (3.27) and qaT from Eq. (3.21), and saving them in finite
element database

7. Calculation of pseudo potential Π for energy balance from Eq. (6.26)
8. Computation of Gauss point contributions to residual vector and tangent matrix from

Eqs. (6.27) and (6.28)

Box 1. Flowchart of AceGen solution algorithm for thermo-elastoplasticity.
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By using relation (6.25) the above equation can be expressed as

(6.33) Fp − exp

(√
3

2
[α− αn]Np

)
· Fpn = 0.

To conclude, the problem to be solved consists of 10 unknowns (i.e., nine compo-
nents of Fp and α) and 10 equations, namely 9 equations presented in Eq. (6.33)
and the plasticity criterion (6.19).

Another crucial aspect of the plasticity solution is its linearization. After
a convergent step of the inner loop the derivatives of internal variables with
respect to the deformation gradient and temperature are calculated by using
the method presented in [47, Subsection 3.3.1]. The derivatives are also used in
this paper for the calculation of quantities involved in the stability condition:
qaT from Eq. (3.21), material tangent D from Eq. (3.26) and stress–temperature
tensor B from Eq. (3.27). At the end of a convergent step the quantities re-
lated to the stability condition are saved in the finite element database and
can be used for verification at a selected Gauss point, after a time step of the
simulation.

7. Numerical analysis of stability condition for
quasi-static conductive case

The aim of this section is to present the numerical analysis of the derived
condition for quasi-static thermo-elastoplasticity, cf. Eq. (5.27). The analysis
is performed for three-dimensional configurations, in particular a homogenous
deformation of a cube under simple shear and tension of a plate with an im-
perfection are simulated with the material model presented in the previous sec-
tion. At selected Gauss points and load steps the verification of the condition
is performed by seeking the minimum of the left-hand side of Eq. (5.27) for the
discretized vector N which is described in spherical coordinates by using the two
angles α and β

(7.1) N = cos(α) cos(β) e1 + sin(α) cos(β) e2 + sin(β) e3

with orthonormal base system {e1, e2, e3}. The angle α is discretized in range
[0, π] and angle β in range [0, π/2] with increment π/360 (i.e., 0.5 deg).

For the analysed values of the angles α and β the left hand side of Eq. (5.27),
i.e., the value of variable S, is calculated. It is checked if the value is greater
than zero. In addition, the sign of the determinant of the acoustic tensor det(Q)
is verified. Pilot results for the numerical analysis of an elastoplastic tensioned
plate with an imperfection under plane strain or plane stress and isothermal
conditions were presented in [59].
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Material parameters related to elasticity and thermal properties, used in the
simulations, are based on steel properties and are included in Table 1. Plasticity
parameters differ between tests and are provided in the subsequent subsections.
Note that the set of basic units includes mm for length and kN for force, which
implies GPa for pressure, respectively stresses. The value of tolerance for verifi-
cation of the trial state, see points 2 and 3 in Box 1, is assumed to be equal to
ε = 10−8 GPa.

Table 1. Elastic and thermal material parameters.

Property Symbol Value Unit
Bulk modulus κ 164.28 GPa
Shear modulus G 80.23 GPa
Thermal expansion coefficient αT 23.2 · 10−6 K−1

Heat capacity ρ0c 0.00345 GPa/K
Heat conductivity K 0.121 kN/[Ks]

Numerical simulations of a softening material can result in a pathological
mesh dependence which can be an indicator of the loss of stability of a speci-
men. In turn, the loss of stability at a material point (or points) is a precursor
of the loss of stability of the whole structural model. However, the main focus of
the paper is not to provide a regularization framework (even though sufficient
heat conductivity can contribute to the regularization), but to provide an indi-
cator for thermo-plasticity when material stability is lost at the local level, i.e.,
at a material point. Therefore, the mesh dependence is not investigated in the
paper, instead simulations are carried out with one selected mesh for each test.

It is worth mentioning that the first test elaborated in Section 7.1, i.e., simple
shearing of a specimen, simulated with one finite element, results in a uniform
stress state. Using a finer discretization would (depending on the specification of
boundary conditions) result in a different (inhomogeneous) form of deformation,
and thus there would be no point in comparing the results.

7.1. Homogeneous deformation under simple shear

The first test is performed for one cubic finite element in the simple shear
state presented in Fig. 1. The dimensions of the cube are 10× 10× 10 mm, the
enforced displacement ∆L is applied with a uniform rate equal to 0.05 mm/s. The
initial temperature of the sample is T0 = 297.15 K and zero natural boundary
conditions are assumed for the temperature field (insulation). An adaptive time
stepping, provided in AceFEM package [60], is applied in the simulations. The
parameters of the time stepping are as follows: the first time step is 10−2 s,
the minimum and maximum time increments are 10−3 s and 10−1 s, respectively.
The process lasts 100 s.
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L

L

L

L

Fig. 1. One cubic finite element under simple shear, dimensions are in mm.

The sample undergoes exponential hardening defined by parameters: σy0 =
0.3 GPa, σy∞ = 0.45 GPa and δ = 16.93 in Eq. (6.16), and softening caused by
thermal or material sources. In particular, the sample is analysed twice:

• Test 1 – material undergoes linear thermal softening with the thermal soft-
ening modulus HT = 0.02 K−1 in Eq. (6.21) (linear hardening/softening is
inactive, i.e., H = 0 in Eq. (6.16));
• Test 2 –material undergoes linearmaterial softening, withH= −0.621GPa

in Eq. (6.16), without thermal softening, i.e., HT = 0 in Eq. (6.21).

The summary of plasticity parameters for Test 1 and Test 2 is provided in
Tables 2 and 3, respectively.

Table 2. Plasticity parameters for Test 1.

Property Symbol Value Unit

Initial yield threshold σy0 0.3 GPa
Final yield threshold σy∞ 0.45 GPa
Saturation constant δ 16.93 –
Hardening modulus H 0 GPa
Thermal softening modulus HT 0.02 K−1

Table 3. Plasticity parameters for Test 2.

Property Symbol Value Unit
Initial yield threshold σy0 0.3 GPa
Final yield threshold σy∞ 0.45 GPa
Saturation constant δ 16.93 –
Hardening modulus H −0.621 GPa
Thermal softening modulus HT 0 K−1
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The aim of the analysis is to check whether the source of softening, either
material or thermal, influences the stability condition derived in Eq. (5.27).

The response of the sample in Test 1 is presented in Fig. 2. It can be ob-
served from the reaction diagram in Fig. 2a that in the plastic regime the initial
hardening is followed by the decrease of reaction sum due to thermal softening.
The temperature in the sample increases due to plastic heating. It should be
noted that, although heat conductivity is activated in this test, it has no influ-
ence on the results. Due to homogeneous deformation and homogeneous thermal
boundary conditions the distribution of temperature in the sample is constant,
which implies zero temperature gradient.
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Fig. 2. Results for one finite element in simple shear – Test 1: a) sum of reactions in
Z-direction, b) temperature in the sample, c) minimum value of term S in stability condition

(Eq. (5.27)), d) minimum determinant of the acoustic tensor Q (Eqs. (5.9)–(5.10)).

The results obtained from the stability analysis are presented in Figs. 2c
and 2d. In the former diagram the minimum value of term S (Eq. (5.27)) with
respect to vector N is presented. The analysis is performed for the increment
of angles α and β equal to π/360. The minor serrations observed on the curve
result from angle discretization. The negative value of variable S appears for
∆L = 1.57 mm, and when compared with Fig. 2a this occurs just after the
onset of the decrease of the reaction sum for ∆L = 1.39 mm. Simultaneously,
the minimum value of the determinant of the acoustic tensor remains positive
during the whole process. For the first step with a negative value of term S there
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are two directions N for which the term S is less than zero. The first is obtained
for α = 180 deg and β = 0.5 deg, which corresponds almost to the X-axis, and
the second for α = 0 and β = 81.5 deg. The vector N refers to the undeformed
configuration. In order to calculate its counterpart n in the current configuration,
the formula n = F−TN/|F−TN| (valid for the material plane unit normal) is
applied, which renders the critical direction n approximately consistent with the
Z-direction for the second solution.

The results obtained from Test 2 are presented in Fig. 3. Although in the
material models used for Test 1 and Test 2 the sources of softening are different
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Fig. 3. Results for one finite element in simple shear – Test 2: a) sum of reactions in
Z-direction, b) temperature in the sample, c) and d) minimum value of term S in stability

condition (Eq. (5.27)), e) and f) minimum determinant of the acoustic tensor Q
(Eqs. (5.9)–(5.10)). Diagrams c) and d) as well as e) and f) are for different ranges of axes.

Dots in subfigures d) and f) mark time steps.
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(in the first thermal, in the second material) the reactions are very similar, cf. the
diagrams in Figs. 2a and 3a, whereas the temperature curves differ qualitatively
and quantitatively, see the diagrams in Figs. 2b and 3b. The model with material
softening exhibits a larger increase in temperature which grows almost linearly
with loading. The main difference is observed for the stability analysis. The di-
agrams in Figs. 3c, 3d, 3e and 3f present the minimum values of S and det(Q)
from the onset of plasticity until the enforced displacement equals ∆L = 4 mm.
Note that at the beginning of the plastic process the value of min(S) decreases
with deformation but significantly slower than for Test 1, see the diagram in
Fig. 2c. The drop in the value of min(S) observed for ∆L exceeding 1.4 occurs
simultaneously with the appearance of negative values of the determinant of the
acoustic tensor, which is confirmed by the analysis of this part of the process
shown in the diagrams in Figs. 3d and 3f. It is mentioned that the jump of the
value of min(S) for ∆L = 1.498 mm, visible in Fig. 3c and clearly in Fig. 3d,
is a result of too coarse angle discretization.

When comparing the results for Test 1 and Test 2 it can be seen that the
thermal softening causes the loss of stability as indicated by the term S although
the determinant of the acoustic tensor remains positive. The loss of stability
appears simultaneously with the negative slope in the reaction diagram. For
material softening, which results in similar reactions, stability is also lost when
the reactions start to decrease, and the determinant of the acoustic tensor and
stability indicator S becomes negative at the same time.

It is worth mentioning that the simple shear test does not involve all phe-
nomena that can be reproduced by the presented thermo-elastoplastic model.
In this test the thermo-elastic coupling does not result in a temperature change
(the volume of the sample is constant during deformation). Moreover, due to the
homogeneous distribution of temperature in the sample, the temperature gradi-
ent is zero and this implies the zero conductivity term KDiv(Grad(T )) in the
balance of energy (3.19). For this reason subsequent simulations are performed
for a plate with an imperfection, subjected to tension.

7.2. Plate with imperfection

To investigate the stability condition for a complex stress state, simulations
of a plate in tension are performed. The plate shown in Fig. 4 has the dimensions
20 mm, 10 mm and 0.25 mm, and due to symmetry only one fourth of the plate
is implemented, marked in Fig. 4, in grey colour. The adopted discretization is
shown in Fig. 5. At the central point of the original plate an imperfection is ap-
plied in the form of thickness reduction. The perturbed thickness there equals
0.225 mm. The imperfection is achieved by lowering the central node lying on
the upper surface of the specimen. The plate is elongated in the X-direction
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20

10

0.25

Fig. 4. Geometry of plate with imperfection, dimensions are in mm.

Fig. 5. Discretization of plate with imperfection (one-fourth of the specimen) with red dot
denoting location of Gauss point selected for stability analysis (left). Contour plot of
hardening variable α and deformed mesh at loading level ∆L = 0.06mm (right).

by enforced displacement applied with the rate 2 mm/s. Moreover, displacements
in the Y -direction are unconstrained. Similarly to the simulations in Section 7.1,
AceFEM built-in adaptive time stepping is used with the following parameters:
the first time step is 10−3 s and, thereafter, the minimum and maximum time
increments are 10−4 s and 5 · 10−4 s, respectively.

Insulation is assumed for the whole plate boundary. The analysis of sta-
bility is performed at a selected point near the imperfection with coordinates
(0.5528, 0.3028, 0.1971) mm, marked by a red dot in Fig. 5.

The simulations are performed for three cases:

• isothermal model with linear material softeningH = −2.07 GPa, the initial
and final yield thresholds equal σy0 = σy∞ = 0.45 GPa in Eq. (6.16), i.e.,
exponential hardening is not active,
• conductive thermo-elastoplastic material model with linear material soft-

ening H = −2.07 GPa and the initial and final yield thresholds equal
σy0 = σy∞ = 0.45 GPa in Eq. (6.16) and with inactive thermal softening
HT = 0 in Eq. (6.21),
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• conductive thermo-elastoplastic material model with thermal softening
HT = 0.18 K−1 in Eq. (6.21) and initial and final yield thresholds σy0 =
σy∞ = 0.35 GPa in Eq. (6.16) and with inactive material softening H = 0
in Eq. (6.21).

The sets of plasticity parameters for the analysed cases are shown inTables 4–6.

Table 4. Plasticity parameters for isothermal case.

Property Symbol Value Unit
Initial yield threshold σy0 0.45 GPa
Final yield threshold σy∞ 0.45 GPa
Saturation constant δ 16.93 –
Hardening modulus H −2.07 GPa

Table 5. Plasticity parameters for conductive case with linear material softening.

Property Symbol Value Unit
Initial yield threshold σy0 0.45 GPa
Final yield threshold σy∞ 0.45 GPa
Saturation constant δ 16.93 –
Hardening modulus H −2.07 GPa
Thermal softening modulus HT 0 K−1

Table 6. Plasticity parameters for conductive case with thermal softening.

Property Symbol Value Unit
Initial yield threshold σy0 0.35 GPa
Final yield threshold σy∞ 0.35 GPa
Saturation constant δ 16.93 –
Hardening modulus H 0 GPa
Thermal softening modulus HT 0.18 K−1

The results obtained in the simulations are shown in Figs. 5–7. The deformed
mesh with the distribution of hardening variable α obtained for the thermo-
elastoplastic model with material softening for ∆L = 0.06 mm is shown in Fig. 5.
The hardening variable distributions for the remaining models are almost the
same as the one shown in Fig. 5. Strain localization has a form of a shear band
with origin at the imperfection. The selected point for stability analysis lies at
the edge of the localization zone.

In Fig. 6 (left) it can be observed that the reaction diagram for the isothermal
model (green line) is very close to its thermo-elastoplastic counterpart (blue line).
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The slight difference is visible only in the elastic regime due to thermo-elastic
coupling. The model with thermal softening exhibits a slightly different shape of
the reaction curve for plasticity. The temperature evolution at the selected Gauss
point, see Fig. 6 (right), is also similar for the two analysed models, although the
model with thermal softening shows a nonlinear increase of temperature, smaller
at the end of the elongation process.
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Fig. 6. Sum of reactions for plate in tension and evolution of temperature at selected
Gauss point.

The analysis of stability at the selected Gauss point is performed only for the
plastic steps. The left diagram of Fig. 7 shows the minimum values of the acoustic
tensor for the three analysed models. The diagram obtained for the isothermal
model with material softening (green line) is very close to its thermo-elastoplastic
counterpart (blue line). Both of them become negative almost at the same time.
The minimum determinant of the acoustic tensor for the model with thermal soft-
ening also decreases but remains positive until the end of the considered process.
The analysis of the minimum value of the term S for the thermo-elastoplastic
models is presented in the right diagram of Fig. 7. For the isothermal case (the
green diagram), the term S is constant and independent of the direction N.
Its value is S = ρ0c = 0.00345. It cannot be treated as an indicator of stability
in the isothermal case, for which this role is played by the determinant of the
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Fig. 7. Minimum determinant of acoustic tensor Q in Eqs. (5.9)–(5.10) (on the left) and
minimum value of term S in stability condition in Eq. (5.27) (on the right) vs enforced

displacement, both diagrams for selected Gauss point.
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acoustic tensor. For the model with the material softening the term S is positive
up to ∆L = 0.045 mm and then abruptly decreases, and remains negative for
the rest of the process. The determinant of the acoustic tensor for this model
becomes negative exactly at the same load step. For the model with thermal
softening the (absolute) value of the term S is much smaller than for the model
with material softening. The magnified diagram of min(S) in Fig. 7 shows that
its value decreased with the deformation and it remains positive in the analysed
process. It can be concluded that in this case the enhancement of the isothermal
model reproducing material softening with thermo-mechanical coupling does not
improve the stability at the selected point. The loss of positive-definiteness of
the acoustic tensor triggers a negative value of stability indicator S. The reg-
ularizing effect of the thermo-mechanical coupling, i.e., preserving the term S
positive, is significant when softening has its origin in the reduction of the yield
strength due to an increase in temperature.

8. Final remarks

The research presented in this paper deals with the stability of thermo-
elastoplastic material models undergoing large strains. Based on the possibly gen-
eral and thermodynamically consistent material description, the stability analy-
sis has been performed using a perturbative approach. Special attention has been
paid to the quasi-static conductive case, for which a specific stability condition
has been formulated. It is shown in the paper that the derived condition can be
analysed numerically to check whether additional regularization of the material
model is needed.

For the purpose of this study a finite element algorithm for the presented
model has been developed and tested with two examples. The application of
the symbolic-numerical toolbox AceGen/FEM for computer simulations allowed
for the implementation of the highly non-linear coupled problem.

Computer simulations performed for one finite element subjected to simple
shear have shown that, in the case of thermal softening, the acoustic tensor
possesses positive determinant while the stability term S becomes negative at
the same moment when reactions start to decrease. In turn, the numerical anal-
ysis of shearing for material softening has revealed that the derived stability
condition for thermo-elastoplasticity is violated at the same time when the deter-
minant of the acoustic tensor becomes negative. The verification of the derived
stability condition is thus necessary to indicate the stability loss in the case
where the source of softening is related to thermal effects. Although the overall
response of the material can be similar for various types of softening, the analysis
of stability reveals significant differences. In the presented test of the plate in
tension the regularizing effect of heat conduction is visible when softening is trig-
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gered by thermal effects. The thermo-mechanical coupling does not significantly
influence the results obtained for the material model accounting only for material
softening.

The numerical analysis of stability condition involves finding the minimum
of a term dependent on the direction vector. The method which is applied in the
paper is based on the discretization of the space of direction vectors. It should
be mentioned that the approach is computationally expensive and has limited
accuracy. Further investigations are planned to address this problem and to
propose more efficient methods.

Appendix A

This appendix summarizes notation for vector and tensor products used in
this paper. Let us assume that, for instance, α represents a scalar, boldface lower-
case letters, e.g., a, denote vectors with coefficients ai, boldface uppercase letters,
e.g., A, denote second order tensors with coefficients Aij , calligraphic uppercase
letters, e.g., A, denote third order tensors with coefficients Aijk and blackboard
bold uppercase letters, e.g., A, denote fourth order tensors with coefficients Aijkl.
In all cases we assume that components are referred to an orthonormal basis.
Table 7 summarizes notation used for related products of tensors and high-
lights absolute as well as index notation. Moreover, derivatives of (and with
respect to) vectors and tensors are represented in index notation as, e.g.,

(8.1)
[
∂a

∂b

]
ij

=
∂ai
∂bj

and
[
∂C

∂D

]
ijkl

=
∂Cij
∂Dkl

.

Table 7. Overview on notation used for tensor operations.

Abs. notation Index notation Abs. notation Index notation
a · b = α α = aibi B · a = c ci = Bijaj

a ·B = c ci = ajBji A : B = α α = AijBij

A ·B = C Cij = AikBkj B · a = C Cij = Bijkak

a · B = C Cij = akBkij B : C = a ai = BijkCjk

C : B = a ai = CjkBjki B : C = A Aij = BiklCklj

A · B = C Cijkl = AijmBmkl A : C = B Bij = AklCklij

B · a = C Cijk = Bijklal C : B = A Aij = CijklBkl

C
...B = a ai = CijklBjkl A : B = C Cijkl = AijmnBmnkl

a⊗ b = C Cij = aibj B⊗ a = C Cijk = Bijak

A⊗B = C Cijkl = AijBkl B = AT Bijk = Akij
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Appendix B

The derivatives of perturbations presented in Eqs. (5.5) and (5.6) are sum-
marised in Table 8 using absolute and index notation.

Table 8. Overview on derivatives in space and time of displacement and temperature
perturbations.

Absolute notation Index notation

∂upert

∂X
= ik exp(ikN·X−iωt)û⊗N

∂upertk

∂XJ
= ik exp(ikNMXM−iωt)ûkNJ

∂2upert

∂X∂X
= −k2 exp(ikN·X−iωt)û⊗N⊗N

∂2upertk

∂XJ∂XL
= −k2 exp(ikNMXM−iωt)ûkNJNL

u̇pert = −iω exp(ikN·X−iωt)û u̇pertk = −iω exp(ikNMXM−iωt)ûk

üpert = −ω2 exp(ikN·X−iωt)û üpertk = −ω2 exp(ikNMXM−iωt)ûk

∂u̇pert

∂X
= kω exp(ikN·X−iωt)û⊗N

∂u̇pertk

∂XJ
= kω exp(ikNMXM−iωt)ûkNJ

∂T pert

∂X
= ik exp(ikN·X−iωt)T̂ N

∂T pert

∂XJ
= ik exp(ikNMXM−iωt)T̂NJ

Div(Grad(T pert))=−k2T̂ exp(ikN·X−iωt) Div(Grad(T pert))=−k2T̂ exp(ikNMXM−iωt)

Ṫ pert = −iω exp(ikN·X−iωt)T̂ Ṫ pert = −iω exp(ikNMXM−iωt)T̂
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