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THE PAPER PRESENTS IMPROVEMENTS OVER AN EARLIER DEVELOPED three-dimen-
sional refined plate theory. The improved theory removes the disadvantage of the
earlier theory in that it does not properly satisfy transverse shear stress conditions,
and deficiency in being suitable only for flexure problems. The improved theory is
suitable for use in flexure, as well as, for vibrations and stability problems of plates.
The theory is simple, easy to use and accurate. The number of unknown variables
involved are the same as those associated with thin plates, viz. only one in the case
of flexure and vibrations; and three in the case of stability. The theory is based on
displacement. The theory, to keep it as simple as possible, uses the concept of tar-
geted displacements (which contribute only towards specific stresses, moments, shear
forces, axial forces). All the stresses are represented realistically. The theory uses all
strain displacement relations, and satisfies, as accurately as possible, all constitutive
relations. The moments and forces satisfy gross equilibrium equations. The theory
has some noteworthy similarities with the earlier developed well known theories. Due
to these similarities, the experience of dealing with the earlier developed theories can
be harnessed. Illustrative examples bring out the eficacy of the theory.
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1. Introduction

PLATES ARE IMPORTANT ELEMENTS of many civil, mechanical, aerospace struc-
tures.

Classical Plate Theory (CPT), also known as Love—Kirchhoff plate theory and
also as Thin plate theory, was developed in the late nineteenth century. The CPT
is widely in use even today because of its simplicity. A book by TIMOSHENKO
and WOINOWSKY-KRIEGER |[1] is the most authentic text on the CPT.

The CPT takes into account only in-plane stresses and does not take into
account effects of transverse stresses.

In 1945, REISSNER |2] presented a stress based plate theory; and subsequently
in 1951, MINDLIN [3| presented a displacement based plate theory, which took
into account transverse shear stresses. Many theories got developed afterwards.
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Important amongst these are theories by Lo et al. [4], KRISHNA MURTY [5],
LEVINSON [6], KANT |7], REDDY [§], CARERRA [9], SHIMPI [10]. Most of these
theories are based on displacement. Exact elasticity theories were given by SRINI-
VAS et al. |11, PAGANO [12]|. Review papers |13H15] give a good account of the
developments in the plate theory.

Plate theories are constantly evolving. There is always a need for simple yet
accurate theories.

1.1. Desirability for a plate theory to have minimum number of unknown variables
There are some important observations about development of plate theories:

1) It was noted by Lo et al. [4, p. 664]:

“Plate theories can be developed by expanding the displacements in power
series of the coordinate normal to the middle plane. In principle, theories de-
veloped by this means can be made as accurate as desired simply by including
a sufficient number of terms. In practice, however, a point of diminishing re-
turns is reached whereby the complexity of the resulting forms becomes too
great.”

2) It was noted by ABRATE and D1 ScIuva |15} p. 490]:

“Displacement approximations can be expressed as polynomial or non-poly-
nomial expansions in terms of the transverse coordinate. It is expected that
the number of terms retained increases, the accuracy of the predicting will
improve. However the number of unknowns to be determined will increase,
leading to a more complex formulation.”

As the number of unknown variables increase, complications also increase,
also identifying correct specifications of boundary conditions becomes increas-
ingly difficult.

Therefore, it is always desirable to have a fairly accurate theory having less
number of variables.

1.2. Developments of fairly accurate theories having two or less unknown variables

Two wvariable theories: In 2002, in |10], the refined plate theory (RPT) and
its variants were presented. The RPT has received a fairly good response in
the literature. The zeroth-order shear deformation theory for plates |16] was
a precursor to the RPT.

The RPT had two variables, it was a variationally consistent shear deforma-
tion theory, wherein transverse shear stresses across thickness were parabolic in
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nature satisfying zero shear stress conditions on plate surfaces. The theory gave
very accurate results; one of the governing equations and boundary conditions
had striking similarities with those of the CPT.

The RPT was further extended for vibrations |17], orthotropic plates [18].
Also, the RPT was the base for two new first-order shear deformation plate
theories |19].

Single variable theories: One of the variants of the RPT was RPT-Variant I1|10].
The RPT-Variant II shared many characteristics of the RPT, but it involved only
one variable, it was variationally inconsistent, and had the governing equation
and boundary conditions strikingly similar to those of the CPT. And, surpris-
ingly, the results obtained using the RPT and the RPT-Variant II were almost
identical.

The RPT-Variant I [10] was used as a base in plate vibrations |20], pull-
in instability of microbeams [21], three-dimensional refined plate theory using
targeted displacements [22].

1.3. Concept of ‘targeted displacement’

To the best knowledge of the author, the term ‘targeted displacement’ was
first used in [22]. The term was used in respect of some components of dis-
placements, which contribute only towards specific moments, shear forces, and
stresses.

Now, from the hindsight, one can say that even the CPT inherentely used
the targeted displacement concept. The displacements of the CPT give rise to
only flexural strains and flexural stresses, as a result, give rise to only mo-
ments. The transverse shear strains in the CPT are identically zero. Therefore,
if constitutive relations are used to obtain stresses, transverse shear stresses and
transverse shear forces would turn out to be identically zero. Therefore, the dis-
placements of the CPT can be considered to be targeted displacements, which
contribute only towards moments.

The appropriate use of targeted displacements in a theory can result in re-
duction of complexity as was shown in [22].

1.4. Aim of the present work

In [22], “Three-dimensional refined plate theory using targeted displacements
and its variant” was presented. The theory, though otherwise good, has the
following deficiencies:

1) The transverse shear stress boundary conditions were not properly satisfied.
2) The theory was suitable only for flexure problems of a plate.
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With the aim to remove the deficiencies of |22], the present paper “Improved
three-dimensional refined plate theory” (Improved 3D-RPT) free of these disad-
vantages is presented.

The Improved 3D-RPT is suitable for use in flexure, as well as, in vibrations
and stability problems of plates. In the theory, displacement definitions include
inertial terms. Effects of all the stresses are taken into account. The theory is
easy to use and gives accurate results for thin, as well as, thick plates.

The scope would include flexure, free vibrations, static stability.

About some terminologies used in this paper: the term ‘flexure’ used here is
synonymous with the term ‘bending’; and, the term ‘vibrations’ used here would
inherently mean ‘free vibrations’.

2. The distinguishing differences between the present work
and the earlier work

The present work is an improvement over the earlier work [22], it is necessary
to point out the major differences between them.

Seemingly, it may appear that the present work is a straightforward extension
of [22|, but it is not the case for the following reasons:

1) The displacements of [22| do not contain inertial terms.

Whereas, the displacements of the present work contain inertial terms.

2) In 22|, the number of targeted displacement terms is 7.

Whereas, in the present work, the number of targeted displacement terms
is 17.

3) The transverse shear stresses of [22| were not completely satisfying shear
stress free boundary conditions on the surfaces of the plate. This deficiency
has been removed in the present work.

4) In the case of plate vibrations, if the displacement expressions of [22]| are
used, expressions for transverse shear forces would result in inconsistencies.
In support, it can be noted that expressions for transverse shear forces can be
obtained in two ways:

(a) Direct way: using strain-displacement relations, transverse shear strains
can be obtained; and then using appropriate constitutive relations, trans-
verse shear stresses can be obtained. Then using these stresses, expres-
sions for transverse shear forces can be obtained in a straightforward
way.

(b) Indirect way: using strain-displacement relations and constitutive rela-
tions, one can obtain flexural stresses; and using these stresses, moments
can be obtained.
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Now, how to obtain expressions for shear forces in the case of the CPT
for a static problem, is described in |1, pp. 81-82|. Following similar
procedure and by using gross equilibrium equations for plate vibrations,
expressions for shear forces can be obtained in the case of plate vibrations
in an indirect tedious way.

If displacements of |22] are used, then the shear force expressions obtained by
procedures given in the just mentioned items (a) and (b) would be different
from each other (one would not have inertial terms, whereas the other would
have inertial terms) and this is the inconsistency.

But,

such inconsistency would not be there in the present work, because the

displacements of the present work are substantially different from those of |22]
and contain appropriate inertial terms.

5) In |22|, there is no provision for in-plane forces. The present formulation
removes this deficiency.

Therefore, it can be seen that the present work is not a straightforward extension
of work reported in [22|. But, the present work is substantially different from
that of |22] and has its own distinct and unique features.

3. Plate under consideration

1) Geometry of the plate: A right-handed Cartesian coordinate system o-z-y-z
would be utilized.

(3.1)

The plate is of uniform thickness h.
The mid-surface of the unloaded plate lies in xy-plane.

The origin o of the coordinate system o-z-y-z is chosen at a convenient
location.

The present work is valid for a plate having any plan form.

For the sake of convenience of derivation and for illustration, a rectangu-
lar plate (of length a, width b, thickness h) is considered. The unloaded
plate occupies the region:

0<z<a, 0<y<b —h/2<z<h/2

The term ‘plate surfaces’ would be used to indicate plate surfaces at
z==+h/2.

2) Loading on the plate:

(a)

In the case of plane stress:
The plate is subjected only to static in-plane forces N, Ny, Ny, and
applied at the mid-surface of the plate.
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The surfaces z = +h/2 do not have lateral loading and are shear-stress
free.

(b) In the case of flexure:
The plate is loaded only by a static lateral load of intensity ¢(z,y) on
surface z = —h/2. The lateral loading would be considered positive, if
it is acting along the positive z-direction. The surfaces z = +h/2 are
shear-stress free. There is no in-plane loading.

(c) In the case free vibrations:
There is no in-plane loading, as well as, there is no lateral loading.
The surfaces z = +h/2 are shear-stress free.

(d) In the case of static stability of plate:
The loading would be a combination of the case of plane stress and of
the case of flexure (i.e., a combination of just mentioned cases in items

(a) and (b)).
3) Material of the plate:

) The plate is made of linearly elastic, homogenious, isotropic material.
b)
c¢) Poisson’s ratio is .
)
)

(a
(

The modulus of elasticity of the material is E.

(
(d) The shear modulus is G, where G = E/[2(1 + p)].
(e) The density of the material is p.

4. Some theory of elasticity relations, definitions of moments, forces
The TIMOSHENKO notation [23] would be used for strains, stresses.

1) Strain definitions: Strains are related to displacements u, v, w (in z-, y-,
z-directions, respectively) as follows:

o o o
= Bz’ ey_ﬁy’ 2= 9z’
(4.1)
ov @ ow 0Ov ou Ow

%cy:a?""ay; 'szzaiy‘i‘%a ’}’zx:&'i‘%.

2) Constitutive relations of the theory of elasticity: Strains are expressed in terms
of stresses by following constitutive relations:

(4.2) € = |05 — poy — po]/E,

(4.3) ey = [oy — po. — po, | /E,
(4.4) €. = |0, — poy — poy| /E,
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(4'5) Yy = Tay [2(1 + ,LL)/E],
(4.6) VYyz = Tyz [2(1 + H)/E]a
(4.7) Yoz = T2z [2(1 + p)/EJ.

3) Definitions of in-plane forces, moments, shear forces:

In-plane forces (N, Ny, Nyy), moments (M, My, My,), shear forces (Q, Qy)
are defined as follows:

(N, Oz

Ny Oy

Ny 2=h/2 Txy

(4.8) M\ / Te 2% dz.

M, Oy 2
Mg, ==h/2 | 7 2

x Tzx

\ Qy ) Tyz

5. Assumptions

Some appropriate assumptions would be made:

1) It would be assumed that the displacements involved are small such that
strain-displacement relations, as given by Eq. , of the theory of elasticity
hold good.

2) In the plane stress case and in the plate vibration case: as there is no lateral
loading, and as transverse strains are not prevented, transverse normal stress
0, would hardly be there; and it can be safely assumed that: o, = 0. Using
constitutive relations and , one then gets:

E
1 — p?

E
Op = (€z + pey) and oy = ——(€y + pez).

1 — p?

3) In the plate flexure case: there is lateral loading, but transverse strains are
not prevented.
The transverse normal stress o, is, in general, very small compared to in-plane
stresses o, and oy.
In constitutive relation , there are terms o, poy and puo..
In constitutive relation , there are terms oy, po, and po,.
Therefore, in constitutive relations , , it is justifiable to ignore the
term po, (as o, itself is, in general, very small compared to in-plane stresses
o, and oy).
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Using constitutive relations (4.2)) and (4.3)), one then gets:

E
Oy = —7/12(636 + pey) and oy =

E
1 _7M2(6y + peg).

1

4) In the constitutive relation , the terms involved are o, and po,, poy.
No term needs to be ignored. The constitutive relation should be satis-
fied as accurately as possible; and while satisfying constitutive relation ,
ignorable higher-order entities in the stresses o, and o, can be safely ignored.
It needs to be noted that the constitutive relation is completely ignored
in many theories (e.g., the CPT [1], Mindlin’s theory [3|, the RPT [10]).

5) The constitutive relations 7, which relate shear strains vzy, Vyz, Y2z
to shear stresses 7.y, Ty, T2z, respectively, need to be satisfied.

6) In the case of static stability of the plate, the in-plane forces and lateral
loading both can be there.

(a) When only in-plane forces are applied to the plate, there would be in-
plane stresses in the plate, and these in-plane stresses would remain
practically the same even when additional lateral loading is also applied.

(b) When only a lateral load is applied to the plate, there would be moments
and shear forces in the plate, and these moments and shear forces would
remain practically the same even when additional in-plane forces are also
applied.

These assumption (a) and (b) are in tune with the derivation of the Saint-
Venant stability equation (as given in |1 pp. 378-380]).

6. Use of overbraces in this paper

Consider, only just for illustration, the following equation:

Uup Ucq
Uo P 3
(6.1 u=le 4~ ) 4o (7w
x
dq p 0 0wy
2, 1+ 04 3
+h¢2Ea —i—hd) (8752 .

In the preceding equation, five overbraces are used to show that the right hand
side of the equation for u has five components. The names of the components
(in this case uy, up, Ue,, Ue,, U;) are written over the corresponding overbraces.
Whatever is written over the overbraces is only for information and explanation
purposes. Wherever necessary, such a convention of using overbraces would be
utilized.
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7. Displacements

Going by the experience gained from references [10, 16-22| and with some
efforts, it is possible to write down the displacements u, v, w (in z-, y-, 2-
directions, respectively):

'LLOC Up
— 9 [ou, ov, ow,
1 —w 24 9 _Owy
(7.1) U u($,y)+h¢1ax<8x+ay>+< Z8x>
Uey Ueo u;

0 1 0q p O (0%wy
3 -~ 2 2 - Y4 3 L
+h (f)gax(v wb)-l-h ¢3E8x+h ¢4E < ,

Ox \ Ot2
Vo Vp
— o (Ouy  Ov, dwy,
2 = 24 — _ 20
(7.2) v=uv(x,y)+h ¢18y<8x+8y>+( Z@y)
Veq Veg Bl

3 24,294 13 ﬁé d%wy
+h¢2 (Vwb)+h¢3 + ¢4E8y< >,

ot?
awOC 8 wy Weq Weqg
uo Vo
(7.3) = —2¢ +wp(,y, 1) + h26(72wp) + hpr
8y E
2, p Py
+h gz E o2

where wu, v, w are functions of coordinates x, y, z and time ¢,
Uy, Vo are functions of coordinates x, y,
Wy, is a function of coordinates z, y, z,
wp is a function of coordinates z, ¥ and time t,

R O

j
)

5 3 2
co o= [5(c) 1G) 5 G) ) )
0 b=+ [ - ;(;)3+210 (h)]
(7.8) 5= ——,
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1 [p/z 7 84 "
7.9 =— =) —
19 b 1_M{2<h) ]
1/2\" 372\ 1/2z\ 39
(7.10) o1 [ 2<h> +4<h> 2<h> 1120}’
1+

(1) =t
where the functions would be referred to
U, Vo plane stress components of displacements u, v, respectively,
Uo,, Vo, Wo, complimentary plane stress components of displacements u, v, w,

respectively,

up, Uy, wp  bending components of displacements u, v, w, respectively (and
can be considered to be analogous to the classical plate theory
displacements u, v, w, respectively),

Ue, , Uey complimentary components of displacement w,
Vey s Vey complimentary components of displacement v,
Wey s Wey complimentary components of displacement w,
Us, Vi, Wy inertial components of displacements u, v, w, respectively.

As the displacements considered are unique and single valued, the compati-
bility conditions would get automatically satisfied.

8. Obtaining expressions for stresses 0., 0y, Ty, Tyzs Tzz
(using displacements, strain definitions, constitutive relations)

Using expressions for displacements u, v, w (given by expressions ([7.1)—(7.3)),
respectively), using strain definitions (4.1)), various strains can be obtained. Using

these strains and the constitutive relations (4.2)), (4.3), (4.5)-(4.7) and taking
into account the assumptions [2 and [3] of Section [5] one gets:

contribution due to u, and v, contributions due to u,. and vo,.
E ou,  Ov, Eh? 02 02 ou, 0Ov,
81)  0u= 1o gotngt ) 1 + Toy
(8.1) 12 ( Ox 8y w2 -2 022 'u(?y or Oy
contribution due to up and vy, contribution due to uc; and ve;
N Ez [0%wy n 9wy, + ER? B, 0? n ? ( )

- w

1—p2 \ 0x2 K Oy? 12 2\ 0z M@ 2 vy
contribution due to uc, and ve, contribution due to u; and v;

h? 32 82 ph? 0% [ 0%wy 0wy,
2¢3( " oy? )+1—u2¢40t2(0w2 e 0y2>’
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contribution due to u, and v, contributions due to u,. and vo,.
E ov, ou, Eh H? H? ou, Ov,
8.2 = —— | —
(82) oy 1,u2<6y+ 8$) 2¢1<8 2 'u(?xQ 6m+8y
contribution due to up and vy, contribution due to uc; and ve;
4 Ez 82wb + 82wb n E ¢ 82 + 82 ( )
- w
-2\ a2 o 1-272\ 92 TH s vy
contribution due to uc, and ve, contribution due to u; and v;
h2 82 82 h3 0% (0%w,  O%wy
12 T 2% 972 T qub‘i 2\ o2 H a2 )
oy 1—p? " 0t \ Oy ox
contribution due to u, and v, contribution due to 1o, and vo,,
E v,  Ou E h? 0% [(Ou, Ov
89 roy= g (D Qi) R B[O o
2(1+p)\ 0x Oy 1—|—,u Oxoy \ dx Oy
contribution duetouy andv,  contribution dueto uc) andve,
Ez 0%wy, 0?2 )
_ 1—
+[ 1—u2( m@x@y} 1+u¢2@x3y( Vi)

contribution due to uc, and vey  contribution due to u; and v;

——
h? L 0%q ph? 872 0wy,
1+ 9zdy 1+p o2\ ozoy

contribution due to Veq andwCl

ER? [1/2\* 118, ,

contribution due to v; and w;
7\

1/2\? 1] 8% [Ow,
R = (2) o= 22
o= () e (5)
contribution due to Uey and Wey
ER? [1/2\* 1190

contribution due to u; and w;

o[ _1(2\", 1] 2% (0w
+ph[2h 3lae\ oz )

It should be noted from expressions and (| . ) that:

(8.6) [Tyzlomtnje =0 and  [7og].—ip/2 = 0.

Equation indicates that plate surfaces z = £h/2 are shear stress free.
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9. Obtaining of expressions for axial forces, moments, shear forces
(using displacements, strain definitions, constitutive relations,
definitions for axial forces, moments, shear forces)

Using expressions for stresses oy, 0y, Tay, Tyz» T2z (given by expressions

(8.1)—(8.5)), respectively) and definitions (given by Eq. (4.8)), one gets:

contribution due to u, and v,
"

" Eh ou, v,
9.1 N, =
(9-1) 11— < Ox tH oy )
contribution due to u, and v,
Eh 81}0 Ou,
9.2 N, = ——
contribution due to u, and v,
Eh ov, Ou,
9.3 Ny =— (224 22),
(5:3) Iy 2(1+u)<(9f6+5y>
contribution due to uy,vp
9wy, 9wy,
9.4 M,=-D
(9-4) v < Ox? Tt 0y? )
contribution due to uy,vp
9wy, 9wy,
(9.5) M, = D<82 +“ax2)’
contribution due to uy,vp
0%wy,
9.6 M., =—-D|(1—
(9.6) L=
contribution due to Ucq ,Wey contribution due to u; ,w;
—_— —_—
0 ,Oh3 82 awb
) = —D— (2 [ B
(07) @a ar V) ol e )
contribution due to ve; ,wey contribution due to v;,w;
——N
0 ph3 82 811)1)
9.8 = -D—(v? =
where
EhR?
(9.9) D=

T Ri-2)
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10. Displacement expressions for particular classes of problems

Displacements u, v, w are given by Eqs. (7.1)—(7.3)), respectively. However,
for specific cases, all the terms mentioned in the equations would not be required.
The terms required for specific cases would now be stated:

1) Displacements in the case of plane stress
Displacements u, v, w in the case of plane stress would only include terms
which represent contributions due to components o, Vo, Uo,, Vo,, Wo, from
amongst the terms mentioned on the right hand side of Egs. —, re-
spectively.

2) Displacements in the case of plate flexure
Displacements u, v, w in the case of flexure would only include terms which
represent contributions due to components wuy, vy, Wp, Ue;, Ve, Weys Uey, Veg,
we, from amongst the terms mentioned on the right hand side of Egs. (7.1)—

, respectively.

3) Displacements in the case of free vibrations
Displacements u, v, w in the case of free vibrations would only include terms
which represent contributions due to components up, vy, Wy, Ue, ;s Veys Weys Ui,
v;, w; from amongst the terms mentioned on the right hand side of Eqs. (|7.1)—

(7.3), respectively.

11. Expressions for stresses o, 0y, 7, and 7., 7, for particular classes
of problems (using displacements, strain definitions, constitutive
relations)

In Section (8| general expressions for stresses ou, 0y, Tay, Tyz, T2z (given by
Eqgs. 7, respectively) were obtained. However, for specific cases, all the
terms mentioned in these equations would not be required. The terms required
for specific cases would now be stated.

1) In the case of plane stress

(a) Expressions for stresses o, 0y, Tzy in the case of plane stress (using
displacements, strain definitions, constitutive relations)
Stresses 0, 0y, T4y in the case of plane stress would only include terms
which represent contributions due to components u,, Vo, Uo,, Vo, from
amongst the terms mentioned in the right hand sides of Egs. 7,
respectively.

(b) Expressions for stresses 7,., 7., in the case of plane stress (using dis-
placements, strain definitions, constitutive relations)
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(11.1)
(11.2)

It can be seen that u,, v, (plane stress components of displacements u, v,
respectively), and u,,, Vo, Wy, (complimentary plane stress components
of displacements u, v, w, respectively) do not contribute towards tran-
verse shear stresses, and this gets reflected in the right hand side of

Egs. (8.4) and (8.5)), therefore:

Ty = 0 in the case of plane stress,

T, = 0 in the case of plane stress.

2) In the case of plate flexure

(a)

(11.3)

(11.4)

Expressions for stresses o, 0y, T4y in the case of plate flexure (using
displacements, strain definitions, constitutive relations)

The plate flexure is a static phenomenon and involves only lateral load-
ing. There is no in-plane loading.

Therefore, stresses oy, 0y, T4y in the case of plate flexure would only
include terms which represent contributions due to components wuy, vy,
Uey, Vep, Uy, Vey from amongst the terms mentioned on the right hand
sides of Egs. 7, respectively.

Expressions for stresses 7., 7, in the case of plate flexure (using dis-
placements, strain definitions, constitutive relations)

The plate flexure is a static phenomenon and involves only lateral load-
ing. There is no in-plane loading.

Stresses Ty, T.; in the case of plate flexure would only include terms
which represent contributions due to components uc,, v¢, We, from
amongst the terms mentioned on the right hand sides of Eq. , ,
respectively. Therefore:

contribution due to ve; and we,

ER? [1(z\> 1] 0
Ty = T 2 _5 <Z> —g_ a—y(VZwb) in the case of flexure,
contribution due to uc; and we,
ER? [1/2\* 1]
Tog = T2 _5 <Z> —g_ %(Vwa) in the case of flexure.

3) In the case of plate vibrations

(a) Expressions for stresses o, 0y, T4y in the case of plate vibrations (using

displacements, strain definitions, constitutive relations)

In free vibrations of plates, there is no lateral loading and there is no
in-plane loading.
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Stresses 0., 0y, Tzy in the case of plate flexure would only include
terms which represent contributions due to components up, Vp, U, ; Ve
uj, v; from amongst the terms mentioned in the right hand sides of
Eqgs. 7, respectively.

(b) Expressions for stresses 7., 7,. for vibrations (using displacements,
strain definitions, constitutive relations)

In free vibrations of plates, there is no lateral loading and there is
no in-plane loading. Stresses 7,., 7., for vibrations would be given by

Egs. (8.4), (8.5, respectively.

12. Approximate, yet accurate and easy to use expressions
for stresses 0., 0y, 7,y and o, in the case of plane stress

Stresses 04, 0y, Tzy in the case of plane stress can be obtained as shown
in item [1| of Section However, it is possible to arrive at approximate, yet
accurate and easy to use expressions for the stresses o, oy, 7,y in the case of
plane stress.

1) Approzimate, yet accurate and easy to use expressions for o, Oy, Ty N the
case of plane stress. It can be observed that:

(a) In the in-plane forces N, Ny, Ny, (given by expressions (9.1)—(9.3),

respectively), there is contribution only from w,, v,.

(b) In the general expressions for stresses o, 0y, Ty (given by expressions
(8.1)—(8.3)), respectively), there are contributions from u,, v, and from

Uo,, Vo, And, it can be observed that:

i) The contributions towards stresses oy, 0y, T,y due to u,, v, are con-
stant across the thickness and only these terms contribute towards
forces Ny, Ny, Nyy.

ii) The contributions towards o, oy, T2y due to u,,, v, involve a func-
tion of z containing the higher order h2 term (and, therefore of lesser
importance and insignificant). And, not withstanding that, and most
importantly, u,,, vo. do not at all contribute towards in-plane forces
Nz, Ny, Ngy.

As aresult, in the general expressions for 0, oy, 75y (given by expressions
(8.1)—(8.3))), the contributions of complimentary plane stress components
Uo,, Vo, can be safely ignored.

Therefore, in the case of plane stress, the stresses o, oy, 74y can be given by
approximate, yet accurate and easy to use expressions:
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contribution due to u, and v,

E Ou, ov,

1—p?
contribution due to u, and v,
7\

) in the case of plane stress,

E [0 0
(12.2) oy N T3 <;O + ;0) in the case of plane stress,
— 12\ dy x

contribution due to u, and v,

E o 0 .
(12.3) Toy R W+ (881; + 881; ) in the case of plane stress.

2) In-plane force expressions Ny, Ny, Ny, do not change even though they are
obtained using approzimate in-plane stresses o, oy, Tzy. For obtaining in-
plane stresses o, oy, T4y there would be two options:

(a) In-plane stresses o, 0y, T,y can be obtained by using Eqs. (12.1)—(12.3)),
respectively, or

(b) for marginally higher accuracy, in-plane stresses o, oy, T,y can be ob-
tained as specified in item [I|(a) of Section

However, whether expressions for in-plane stresses o, oy, T4y are obtained
by either using just the mentioned option (a) or option (b), in both the cases
Ny, Ny, Ny are still given by expressions 7, respectively.

3) Ezpression for o, and satisfaction of constitutive relation (@A) in the case of
plane stress: As per assumption [2] of Section [5] in the case of the plane stress
problem of the plate, as there is no lateral loading, and as transverse strains
are not prevented, transverse normal stress o, would hardly be there; and it
can be safely assumed that: o, = 0. Therefore:

(12.4) 0, =0 in the case of plane stress.

The displacemens associated with the plane stress case are specified in item
of Section In the displacement w, given by Eq. , only the w,, (com-
plimentary plane stress component of displacement w) is associated with the
plane stress case. Therefore, one gets:

1 du, Ov,
12. SR
(12.5) €2 1= 4 < I + ay

) in the case of plane stress.

Using Eqgs. (12.1)), (12.2)), (12.4), (12.5)) in the constitutive relation (4.4}, one
can see that the constitutive relation (4.4) gets satisfied in the case of plane
stress.
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13. Approximate, yet accurate and easy to use expressions
for stresses 0., 0y, 7y and o, in the case of flexure, vibrations

In the case of plate flexure, stresses o, 0y, Tz, can be obtained as specified

in item 2f(a) of Section

In the case of vibrations, stresses o, oy, 74y can be obtained as specified in
item [3|(a) of Section

However, it is possible to arrive at approximate, yet accurate and easy to use
expressions for the stresses o, 0y, 75, in cases of flexure and vibrations.

1) Approzimate, yet accurate and easy to use expressions for stresses oy, 0y, Tay
in cases of flexure and vibrations. It can be observed that:

(a) In moments M, M,, M,, (given by expressions 7, respectively)
there are contributions only from wy, vp.

(b) In the general expressions of stresses o, 0y, Tyy (given by expressions

(8.1)), (8.2), (8.3]), respectively) there are contributions from wuy, vy, and

also from e, , Ve,, Uey, Vey, Ui, V;. It can be seen that:

i) The contributions towards stresses o, 0y, Tz, from the displacement
components uyp, vp contain linear z terms, and only these terms con-
tribute towards moments M, M,, M,,.

ii) The contributions towards stresses o, 0y, Ty from the complimentary
displacement components e, , Ve, , Uey, Vey » Uiy ¥ also involve functions
of z. And, these functions in case of u,, , ve, contain h® terms; in case
of Ue,, Ve, contain h? terms; in case of u;, v; contain h® terms; and all
these are higher order terms (and, therefore, are of less importance).
And, not withstanding that, and most importantly, these terms do not
at all contribute towards the moments M, M,, My,.

As a result, in the general expressions for stresses o, 0y, T2y (given by
expressions (8.1)—(8.3]), respectively), the contribution of displacement
components Ue, , Ve, , Uey, Vey, Ui, V; can be safely ignored.

Therefore, in the case of plate flexure and in the case of plate vibrations, one
can write approximate, yet accurate and easy to use expressions for stresses
Ox, Oy, Toy 88!

contribution due to uy,vp

Ez [0 & wy |
(13.1) o, ~— 1_22 _ 8;;) +u 8;;7_ in the cases of flexure and vibrations,
contribution due to uy,vp
CBx [Pwy, 9wy
(13.2) oy~ — 1_22 _ 8:;) +u 6;021)- in the cases of flexure and vibrations,
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contribution due to uy,vp
E 0?
(13.3) Ty = : [(l—u) 3 gb} in the case of flexure and vibrations.
oY

_1—,u2

2) Moment expressions My, M,, My, do not change even though they are ob-
tained using approximate stresses o, 0y, Tyy. For expressions for stresses o,
Oy, Tzy there would be two options:

(a) stresses oy, 0y, Tzy can be obtained by using Eqgs. (13.1)—(13.3), respec-

tively, or

(b) for marginally higher accuracy, stresses o, 0y, Tzy can be obtained for

flexure as specified in item [2|(a) of Section [11} and can be obtained for vi-
brations as specified in item [3|(a) of Section

However, whether expressions for stresses o, 0y, T,y are obtained by either
using the just mentioned option (a) or (b), in both the cases M, M,, M,,
are still given by expressions 7, respectively.

3) Approximate expression for o, and satisfaction of constitutive relation (L4
i the cases of flexure and vibrations.

(a) In the case of plate flexure: in item [2] of Section displacements u, v,

(13.4)

(13.5)

w for the case of flexure are specified. Using the information for w, the
following expression would be valid in the case of flexure:

3
1
e, = 1M_ZM(V2wb)+ [_2<Z> +g (Z) —2] % in the case of flexure.

It may be pertinent to note that the constitutive relation , which
involves strain €, and stresses o, oy, 0, is completely ignored in many
plate theories (e.g., CPT [1], Mindlin’s theory [3], RPT [10]).

It has just been shown that expressions , , though approxi-
mate, are nearly equivalent of expressions 7 , respectively (a nu-
merical example, which would be taken up subsequently in this paper,
would substantiate this statement).

Instead of completely ignoring constitutive relation , it would be
better to satisfy the constitutive relation in an approximate, yet practi-
cally accurate, manner.

Therefore, using expression (|13.1)) for o, and using expression ([13.2) for
oy in constitutive relation (4.4, one can get:

€, = ﬂ(VQUJb) + % in the case of flexure.

1 —p
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(13.6)

(13.9)

(13.10)

Comparing Eq. (13.5) with Eq. (13.4)), one can conclude that:

3
z 3/ z 1 .
0, = [— 2 <h> +§ <h> —2} q in the case of flexure.

In item [2(b) of Section [3] loading on the plate in case of flexure was
described. The stress o,, given by the expression (13.6]), satisfies the
surface conditions:

[JZ]ZZh/Q = O)

[Jz]z:fh/Z = —q.

In the case of plate vibrations: displacements u, v, w for the case of
vibrations are specified in item [3| of Section Using this information
in the case of w, the following expression would be valid in the case of
vibrations:

z
€, = L(v%ub) in the case of vibrations.

I—p
As per assumption [2] of Section [5] in the case of plate vibrations, as
there is no lateral loading, and as transverse strains are not prevented,
transverse normal stress o, would hardly be there; and it can be safely
assumed that: o, = 0. Therefore:

o, =0 in the case of vibrations.

Using Egs. (13.9), (13.1), (13.2), (13.10) in the constitutive relation (4.4)),
one can see that the constitutive relation (4.4) gets satisfied.

14. Obtaining of expressions for axial forces, moments and shear forces
in particular cases

Expressions for axial forces, moments, shear forces were obtained in Section[J]
These expressions were obtained by using displacements, strain definitions, con-
stitutive relations, definitions for axial forces, moments, shear forces.

In this context, the contents of item [2] of Section and the contents of
item [2] of Section [13] need to be noted.

Expressions for particular cases would now be mentioned.

1) Forces Ny, Ny, Ngy in the case of plane stress. In the plane stress case,
in-plane forces N, Ny, N, are given by Egs. 7, respectively.

2) Moments My, My, My, in the case of plate flexure and plate vibrations. In
the plate flexure case and also in the plate vibration case, moments M, M,,

M, are given by Egs. —, respectively.
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3) Shear forces Q, Qy in the case of plate flexure. General expressions for Q, Qy
were given by Egs. , . In the case of plate flexure, there would not
be time dependent terms. Therefore, in the case of plate flexure, shear forces
Qz, Qy are as follows:

contribution due to Ueqy s Wey

—N—

(14.1) Q.= -D aa(Vwa) in the case of flexure,
x

contribution due to v, , we,

—N—

3}
(14.2) Qy = —Da—y(Vwa) in the case of flexure.

4) Shear forces Qg, Qy in the case of plate vibrations. In the plate vibration
case, shear forces Q,, @, are given by Egs. (9.7)) and , respectively.

15. Summary of expressions of various entities
of the Improved 3D-RPT

1) Plane stress case:

(a) u, v, w as mentioned in item [1] of Section [10}
(b) 0a, 0y, Tay are as mentioned in item [Ija) of Section
or
are as given by approzimate, yet accurate and easy to use Eqs. (12.1])—

(12.3), respectively.
(¢) 02, Tyz, 2o ave given by Eqgs. (12.4), (11.1)), (11.2), respectively.
(d) Ng, Ny, Ngy are given by Eqgs. (9.1)— , respectively.

2) Plate flexure case:

(a) u, v, w as mentioned in item [2| of Section .

(b) 04, 0y, Tuy are as mentioned in item (a) of Section or are given by ap-
prozimate, yet accurate and easy to use Eqgs. (13.1))—(13.3)), respectively.

(€) 02, Tyz, T2 are given by Eqgs. (13.6]), (11.3), (11.4), respectively.
(d) My, M,, My, are given by Eqgs. 7, respectively.
(e) Qz, Qy are given by Egs. (14.1)), (14.2]), respectively.

3) Free vibration case:

(a) u, v, w as mentioned in item [3| of Section [10}
(b) 0a, 0y, Tay are as mentioned in item [3{(a) of Section
or
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are given by approzimate, yet accurate and easy to use Eqgs. (13.1)—(13.3)),
respectively.

(€) 02, Tyz, T2 are given by Egs. (13.10), (8.4), (8.5)), respectively.
(d) My, My, My, are given by Eqgs. 7, respectively.
(e) Qqu, Qy are given by Egs. (9.7)), , respectively.

4) Plate stability case:

In Section as per assumptions @(a) and @(b), it can be assumed that the case
of static stability of plate can be considered to be a combination of the case of
the plane stress problem (involving in-plane loading for evaluation of in-plane
forces) and a case of the plate flexure problem (involving lateral loading for
evaluation of moments, shear forces).

Therefore, contents of just mentioned items|l|and 2| (of the current Section
are also applicable for the case of plate stability.

16. General gross equilibrium equations in Improved 3D-RPT

The use of the variational approach would have resulted in higher-order terms
in boundary conditions, governing equations. In [10], it was shown that both the
gross equilibrium and the variational approaches give almost identical results.
Therefore, to keep the theory simple and also accurate, the gross equilibrium
approach would be used in this paper.

The theory of elasticity equilibrium equations are:

0oy OTyy | OTug 9%u B
(16.1) Ox + oy 02 Poarr ~ 0,

OTpy 0oy  OTy: 0% B
(16.2) or | 9y | 0z oz =0

0Ty  O1y,  Oo, 9w -
(16.3) Ox oy 0z "o 0

Integrating Eqgs. (16.1)) and (16.2)) with respect to z and between the integration
limits z = —h/2 and z = h/2, using definitions , noting that plate surfaces
are shear stress free, and as per item [2|(a) of Section [3]in-plane forces are assumed
to be static in nature, one gets:

ON, ON,
16.4 z .
(16.4) o "oy 0
ON,, ON
16. e TNy .
(16.5) 5t gy ="
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Multiplying Eq. (16.1]) by z, similarly multiplying Eq. (16.2)) by z, and then
integrating with respect to z and between the integration limits of z = —h/2

and z = h/2, and noting definitions (4.8]) and Egs. (7.1)), , one gets:

oM, OM, ph3 0% [ Owy,
16, OMay _ o Ph° O (Owp _
(16:6) or "oy % 8t2<8x 0
oM, oM, ph® 0% [ Owy
16, zy v 4 PO (0w
(16.7) ar "oy Yt 8t2<8y

Using expressions ((9.4)) through , it can be seen that equilibrium equations

(116.6)), (16.7)) get satisfied identically.
Integrating Eq. (16.3) with respect to z and between integration limits of

z = —h/2 and z = h/2, and noting definitions (4.8) and Egs. (7.3), (13.7),
(13.8) one gets:

z=h/2 )
00, 00, Pw
or oy (177 gz =0
z=—h/2

Using expression ([7.3)) in Eq. (16.8), and noting (as per item (b) of Section

lateral loading ¢ is static in nature and not a function of time, one gets:

(16.8)

0Q,; 0Qy 0wy,  phd 12—p 0%
16. Iy 4 g pv 2B O
169) B T3y TG Ty sa eV W
(1+ 1) P21 0wy

5 E o Y

Equation (16.9) can be expressed in terms of moments. By using Eqgs. (16.6)),
(16.7) one can obtain expressions for shear forces @, @y in terms of moments
Mg, My, M,; and using this information in Eq. (16.9)), one obtains:

M, M, 9°M, 9w
(16.10) 7 g g U P
ph? 12—-plo* (14 p) p2h3 0*wy
Pl =7 12 — =0.
D) [ +5(1—u)]8t2(v e

Equations (|16.4), (16.5)), (16.10) are the gross equlibrium equations of the
Improved 3D-RPT in terms of axial forces, moments. These gross equilibrium
equations would be utilized to yield governing equations for specific cases of plate
flexure, vibrations, stability.
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17. Governing equations for specific cases in the Improved 3D-RPT

Governing equations for flexure, vibrations and for the plate under combined
action of lateral loads and in-plane forces in the Improved 3D-RPT would now
be stated.

17.1. Governing equation for the plane stress in the Improved 3D-RPT

The plane stress case involves only N, Ny, Ng,. Therefore, Eqgs. (16.4)),
(16.5)) would be the governing equations for the plane stress case in the Improved
3D-RPT. These equations are again quoted below for the sake of convenience:

ON, 0N,

171 =
ON, ON,

17.2 oY .

(17.2) ox oy 0

In view of assumption [6f(a) of Section [5] Eqgs. (I7.1), (17.2) would remain valid

even when the in-plane forces and lateral loading both are applied.

17.2. Governing equation for the plate flexure in the Improved 3D-RPT

For the case of plate flexure, as per item f(b) of Section [3] it was assumed
that the plate carries only a static lateral load of an intensity ¢(x,y) and there
is no in-plane loading. Using expressions for M, M,,, M,, (given by expressions

7, respectively) in Eq. (16.10]), and noting that forces Ny, Ny, Ny, and

time dependant terms would not be there, one gets:

17.3 2 2y, = L.
( ) V™V wyp D

Equation ([17.3]) is the governing equation for the plate flexure in the Improved
3D-RPT.

REMARK. The governing equation (17.3)) of the Improved 3D-RPT has striking
similarity with that of the CPT save for the appearance of wy in Eq. (17.3]) of
the Improved 3D-RPT, whearas w appears in the context of the CPT.

17.3. Governing equation for the free vibrations in the Improved 3D-RPT

For free vibrations, as per item [2(c) of Section [3] it was assumed that lateral
loading ¢ and in-plane forces (N, Ny, Ny, ) are absent, then using expressions

for M, M,, My, (given by expressions 7, respectively) in Eq. (16.10]),

one gets:
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9w h3 12 — o2
2 2 b _ P SETH 9 2
(17.4) DV v wy +ph—pa — 5 [1 5(1_M)]6t2(v wp)
(14 p) p*h3 0wy _ 0
5 E ot 7

Equation ([17.4)) is the governing equation for the free vibrations in the Im-
proved 3D-RPT.

17.4. Governing equation for the plate under combined action of lateral loads and
in-plane forces in the Improved 3D-RPT

As per item (d) of Section [3] the loading would be a combination of the
cases of plane stress and flexure (i.e., a combination of cases mentioned in items
2(a) and [2(b) of Section [3). The lateral load and in-plane forces are static in
nature, and the in-plane forces are applied at the mid-surface of the plate.

As per items[6fa) and [6|(b) of Section 5] it was assumed that in-plane stresses
due to in-plane loads remain practically the same whether lateral load is applied
or not. Also, moments and shear forces in the plate due to applied lateral loading
remain practically the same whether additional in-plane forces are applied or not.

It may be noted that the just mentioned assumptions are in tune with the
discussion in respect of the thin plate (subjected to combined action of in-plane
forces and lateral forces) in |1, pp. 378 and 385|.

Following exactly the same logic (as given in [1, pp. 378-379|, which was used
for formulation of the problem of a thin plate under combined action of lateral
loading and in-plane forces), in-plane forces N, Ny, Ny, would be obtained, then
their effect on equilibrium in the z-direction would be considered. The following
steps are involved:

1) Equations (17.1)), (17.2) are the equilibrium equations in the z-direction and
in the y-direction, respectively.
There are two possibilities about in-plane forces Ny, Ny, Ngy:

(a) If in-plane forces N, Ny, N, are specified such that they are in equilib-
rium by themselves, then the equilibrium equations (17.1f), (17.2) would
get automatically satisfied.

(b) Otherwise, the equilibrium equations , can be solved as
a plane stress problem taking care of plane stress boundary conditions
of the problem, and this may involve, depending on the problem, u,, v,
as unknowns to be found out.

In general, plane stress problems are comparatively easy to solve. Af-

ter solving equations (|17.1)), in-plane forces Ny, N, Ny, can be
obtained.
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2) Using Eq. (16.10]), and noting that the loading involved in the present case
is static in nature, the equilibrium equation in the z-direction in terms of
displacements would now be obtained.

Notation w,(x,y) would be used to denote mid-surface displacement

[w(x,y)],=0- Using Eq. (7.3)), one can write:
(175) ’U)O(l‘, y) = [Ui(l‘, y)]ZZO
8+ 1) 39 ¢

_ _p2 B op v 39 4

wolw,y) =W gpa— 5 (V) ~ hg g

From Eq. (17.5), it may be noted that w, involves only w;, as an unknown
function (as the applied lateral load ¢(z,y) is a known entity).
While considering the equilibrium in the z-direction, the components of forces
Nz, Ny, Ngy in the z-direction need to be taken into account. The resultant
equilibrium equation can then be written as:
9% M, 9> M,, 9% M, O%w 9w 0w
17.6 2 g L=— Ny +2Ngy———> + Ny—— |-
(17.6) Ox2 * Oxdy + Oy? {q + N Ox? + ey Oxdy R Oy?
Using expressions for M,, M,, M, (given by expressions 7, respec-
tively) in Eq. (17.6) one gets:
0*wy, 9wy, *wy, 1
2 == Ny—— + 2N,
Oxt + 8:U28y2jL oy* D ¢+ Nz x +

Equation ((17.7) is the equilibrium equation in the z-direction. It should be
noted that the entity w, (given by Eq. (17.5))) appearing in Eq. (17.7) involves

only wp, as an unknown variable.

(17.7)

Equations (17.1)), (17.2), (17.7) are the governing equations for the plate un-
der combined action of lateral loads and in-plane forces in the Improved 3D-RPT.

18. Boundary conditions in the Improved 3D-RPT

For illustration purpose, boundary conditions would be discussed on the edge
x = a of a plate having geometry described by Eq. (3.1)). The boundary condi-
tions would be prescribed by physical understanding of the problem.
18.1. Boundary conditions for plane stress in the Improved 3D-RPT

Plane stress boundary conditions on the edge x = a:
(18.1) either [Nglg=¢ =0  or [ug|s—q Is prescribed,
(18.2) either [Npyle—a =0 or [Up]g—q Is prescribed.
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18.2. Boundary conditions for plate flexure in the Improved 3D-RPT
1) If the edge © = a is simply supported, then:
(18.3) (Wacam0=0 and [My]s—q = 0.

2) If the edge x = a is clamped:
Unlike the CPT, two types of boundary conditions analogous to those dis-
cussed (in the context of the theory of elasticity solutions for beams) by
TIMOSHENKO and GOODIER [23, pp. 45-46| are possible (similar was also the
case in RPT-Variant II [10]).
GROH and WEAVER [24] have observed static inconsistencies that arise when
modelling the flexural behaviour of beams, plates and shells with clamped
boundary conditions using a certain class of axiomatic, higher-order shear de-
formation theories. The clamped boundary conditions going to be prescribed
here do not suffer from such inconsistencies.

(a) If the edge © = a is clamped type I, then:

0
(18.4) [(W]g=q,z=0 =0 and [8:] - 2:0: 0.
(b) If the edge = = a is clamped type II, then:
(18.5) [W]g=a,2=0 =0 and [ZZ] . 220: 0.
3) If the edge x = a is free, then:
18.6 M;li=e =0 and Q.+ OMyy =0
(18.6) (04 i ,

where @), is given by Eq. (14.1) in the case of flexure.

18.3. Boundary conditions for plate vibration in the Improved 3D-RPT

The boundary conditions are the same as those given in the case of plate
flexure (as mentioned in Section , but with the following exception: In the

case of plate vibration, in Eq. (18.6), Q. is given by Eq. .

18.4. Boundary conditions for plate under combined action of lateral loads and
in-plane forces in the Improved 3D-RPT

1) Plane stress boundary conditions on the edge x = 0 are prescribed by
Egs. (18.1) and (18.2)).
2) (a) If the edge = = a is simply supported, then conditions are prescribed by

Ba. (I53)
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(b) i) If the edge x = a is clamped of type I, then conditions are prescribed
by Eq. (18.4).
ii) If the edge = a is clamped of type II, then conditions are prescribed

by Eq. (18.5).
(c) If the edge x = a is free, then conditions are prescribed by ([18.6)).

19. Some noteworthy significant similarities of the Improved 3D-RPT
with the CPT and other theories

1) Some of the expressions for stresses, moments, forces of the Improved 3D-
RPT are as follows:

(a) Plate flexure:
Stresses 0y, Oy, Oz, Tuy, Tyz, Tzo given by Egs. 13.1), (13.2), (13.6),

(13.3), (11.3)), (11.4)), respectively;

Moments M, M,, M, given by Egs. (| ), respectively;
Shear Forces (), Qy given by FKEgs. 14.2), respec-

tively.
(b) Plate vibrations:
Stresses 0y, Oy, Oz, Try, Tyz, Tzo given by Egs. 13.1), (13.2)), (13.10),

, , (18.5]), respectively;

Moments M, M,, M, given by Eqgs. lii%’ respectively;
Shear forces Qz, Qy given by Egs. (9.7), (9.8), respectively.

(¢) Plane stress:

Stresses 0y, 0y, 0z, Tay, Tyz, T2z given by Egs. 12.1), (12.2), (12.4),
12.3)), (11.1)), (11.2f), respectively;

In-plane forces Ny, Ny, Ngy given by Eqgs. , respectively.
The equations of the Improved 3D-RPT, mentioned against (a) Plate flex-
ure and (b) Plate vibrations have striking similarities with the corresponding
equations of the CPT save for the appearance of wy, in the case of the Improved
3D-RPT, whearas w appears in the context of the CPT.
The equations of the Improved 3D-RPT, mentioned against (¢) Plane stress
have striking similarities with the corresponding equations of the conventional
two-dimensional theory of elasticity save for the appearance of u,, v, in the

case of the Improved 3D-RPT, whearas usually u, v appear in the context of
the two-dimensional theory of elasticity.

2) Similarities about governing equations, boundary conditions of the Improved
3D-RPT
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(a)

Plate flexure:

The number of unknown variables involved in the governing equa-
tion of the Improved 3D-RPT is only one (as is the case with
the CPT).

The governing equation of the Improved 3D-RPT has striking sim-
ilarity with that of the CPT save for the appearance of wy in Eq.
of the Improved 3D-RPT, whearas w appears in the context of the CPT.
Except for the clamped type II boundary conditions , other bound-
ary conditions of the Improved 3D-RPT have good amount of similarity
with those of the CPT.

Plate vibrations:

The number of unknown variables involved in the governing equa-
tion of the Improved 3D-RPT is only one (as is the case with
the CPT).

In the governing equation ([17.4]) for vibration of the Improved 3D-RPT,

there is a square bracket [1 + 5(17:%] . Instead of that square bracket, an-
other square bracket [1 + 5(1173/”] appears in the corresponding Eq. (50)
of [20], which is derived using “A single variable refined theory for free vi-
brations of a plate using inertia related terms in displacements” (SVRPT),
and the theory does not take into account normal stress o,.

There is a discussion in |20, p. 143] about the governing equation (50)
of [20]. In view of that the following can be stated:

There is a significant similarity of the governing equation ((17.4)) of the

Improved 3D-RPT with some equations of the following earlier theories:
i) Mindlin’s theory [3],
ii) Levinson’s theory [6], and
iii) “A single variable refined theory for free vibrations of a plate using
inertia related terms in displacements” (SVRPT) |20].
But, one can note that, MINDLIN [3|] and LEVINSON [6] theories in-
volve three unknown functions. The SVRPT |20] involved only one un-
known function. All the three theories take into account transverse shear
stresses, but do not take into account . In contrast, the present theory
involves only one unknown function and takes into account transverse
shear stresses, as well as, the transverse normal stress o.
Plate under combined action of lateral loads and in-plane forces in the
improved SD-RPT:
there are three governing equations:

i) Equations (17.1), (17.2) of the Improved 3D-RPT are similar to
the two equations given in |1}, p. 378|.
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ii) Equation (17.7)) of the Improved 3D-RPT is strikingly similar to the
Eq. (217) given in |1, p. 379] — the only difference is the appear-
ance of wp, w, in Eq. of the Improved 3D-RPT instead of w
in Eq. (217) of [1]. It should be noted that the entity w, (given by
Eq. ) appearing in Eq. involves only wy as an unknown
variable.

And, just mentioned Eq. (217) of |1] is the same as that obtained by
Saint-Venant, if the body forces are ignored (as per the information
in |1, p. 380]).

Therefore, the governing equation of the Improved 3D-RPT
has also a noteworthy significant similarity to the corresponding
equation obtained by Saint-Venant in respect of displacement of the
thin plate subjected to in-plane and lateral loading.

For a plate under combined action of lateral loads and in-plane forces in
the Improved 3D-RPT, the following needs to be noted:

i) In general, as is the case with the thin plate, in the case of the
Improved 3D-RPT would involve three unknown variables, and these
unknown variables are u,, v,, wp.

Three Eqgs. (17.1]), (17.2)), (17.7) need to be solved.

ii) However, quite often, known in-plane forces are prescribed, which
inherently satisfy governing equations ((17.1)), (17.2)), then only one

unknown variable is involved.
In that case Eq. (17.7)), which involves only one unknown variable wy,
needs to be satisfied.

20. About the procedures to obtain stresses in the CPT,
and the Improved 3D-RPT, the exact theories

The difference between procedures to obtain stresses in the CPT and in the
Improved 3D-RPT, needs to be noted:

1) In the CPT, only two direct stresses o, o, and one shear stress 7., can be
obtained using strain-displacement relations and constitutive relations.
In the CPT, stresses 7.;, T,., 0. can only be obtained by tedious indirect
manner by making use of equilibrium equations.

2) Whereas, in the Improved 3D-RPT and also in the exact theories, all the three
direct stresses o, 0y, 0. and all the three shear stresses 7.y, 7., 7.4 can be
obtained directly using strain-displacement relations, constitutive relations.
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21. On the accuracy of the CPT as compared to the exact theories
and implications for the Improved 3D-RPT

Exact plate theories were proposed by SRINIVAS et al. |11] and by PAGANO [12].

1) It has been observed by SRINIVAS et al. in |11, p. 454]:

“The most important conclusion to draw from Table 3, is that even for
a 14% thick square plate, for which thin plate theory underestimates maxi-
mum deflection by 8% and maximum stress by 2%, the true thickness-wise
distributions of stresses are very close to the thin plate and Reissner’s dis-
tributions”.

2) As has been observed by PAGANO in 12} p. 34]:

“It appears to be generally true that convergence of the elasticity solu-
tion to CPT is more rapid for the stress components than plate deflec-
tion, which is an important observation to consider in selecting the form
of a plate theory required in the solution of a specific boundary value
problem”.

In view of the just mentioned observations and noting the contents of item
of Section [I9] it is a foregone conclusion that in the case of plate flexure the
Improved 3D-RPT stresses 0, 0y, 02, Tay, Tyz, Tzo (given by Egs. , ,
(13.6)), (13.3]), (11.3)), (11.4), respectively) would be quite accurate. If marginally
higher accuracy is desired for stresses o, oy, T2y can be obtained as mentioned
in item [2] of Section [I1l

However, it needs to be seen whether the displacement w given by Eq. of
the Improved 3D-RPT is accurate or not. The illustrative example would prove
to be useful in that context.

22. Illustrative examples

In the illustrated examples, all sides simply supported a rectangular plate
would be considered for flexure, vibrations, stability. The plate occupies the re-
gion described by Eq. . Results are given in Table 1 through Table 4. In
the tables, the % errors of particular theories with respect to the exact the-
ory are mentioned in round brackets. These % errors are calculated using the
formula:

value by a particular theory
— corresponding value by the exact theory

(22.1) % error = x 100.

corresponding value by the exact theory
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22.1. Illustrative example — plate flexure

Consider all edges simply supported a rectangular plate, which occupies a re-
gion described by Eq. . The plate carries a uniformly distributed lateral load
of intensity ¢, (acting in the positive z-direction) on the surface z = —h/2. Using
standard Navier’s technique (described in |1, pp. 108-110]) results are obtained.

The non-dimensional displacement @ is defined here as: @ = g;:

The non-dimensional stress o, is defined here as: o, = (’—:

Numerical results for a square plate (a/b =1, u = 0.3) for various h/a ratios
are presented in Tables 1 and 2.

In view of what is stated in Section [21] it is a foregone conclusion that stresses
Oy Oys Oz, Tay, Tyzs Tzz (given by Egs. (13.1)), (13.2), (13.6), (13.3), (11.3), (11.4),
respectively) obtained by the Improved 3D-RPT would be quite accurate.

Therefore, results for the displacement w and for the stress o, to be obtained
as mentioned in item (a) of Section for marginally higher accuracy, would
need to be observed.

It can be seen from the Table 1 that for a thick plate (having h/a = 0.14)
the result for w obtained by the CPT has an error of —8.24%. Whereas, the
corresponding errors are quite small for other theories: the Reissner (—0.01%),
Improved 3D-RPT (—0.15%). Therefore, the Improved 3D-RPT results are fairly
accurate.

TABLE 1. Non-dimensional displacement @ (= %q“’o) at (r =a/2, y =a/2, z=0) for a square

plate (a = b, u = 0.3) for various h/a ratios (% error with respect to the exact theory is
shown in round brackets).

Reissner’s Tmproved Exact

hja | CPT L] theory |11] SD-RPT theory [11]

— present theory

0.05 5459.8 5519.9 5533.2 5522.5
(—1.14%) | (—0.05%) (0.19%) (0.0%)
0.10 341.24 356.27 359.56 356.9
(—4.39%) | (— 0.18%) (0.75%) (0.0%)
0.14 88.827 96.497 98.159 96.801
(—8.24%) | (—0.01%) (—0.15%) (0.0%)

From item [2(b) of Section [15] it can be noted that in the Improved 3D-RPT
flexural stress o, can be obtained using Eq. , however, for marginally ac-
curate results can be obtained as given in item [2(a) of Section It can be
seen from Table 2 that even for a thick plate having h/a = 0.14, as was ex-
pected in view of the observations made in Section results obtained for o,
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TABLE 2. Non-dimensional stress 7, (= Z—z) at (x =a/2, y =a/2, z= —h/2) for a square
plate (a = b, p = 0.3) for various h/a ratios (% error with respect to the exact theory is
shown in round brackets).

Improved 3D-RPT
Improved 3D-RPT sent th
Rei ’ - t theor  breseit theory Exact
h/a | CPT |1]] C1SSNEL S  present theory higher accuracy
theory |11] | using approximate ine it theory [11]
B, " using item [2{a)
of Section
0.05 —114.93 —115.02 —114.93 —115.09 —115.26
(=0.29%) | (—0.21%) (—0.29%) (—0.15%) (0.0%)
0.10 —28.732 —28.822 —28.732 —28.895 —28.998
(—0.92%) | (—0.61%) (—0.92%) (—0.36%) (0.0%)
0.14 —14.659 —14.749 —14.659 —14.822 —14.946
(=1.92%) | (—1.32%) (—1.92%) (—0.83%) (0.0%)

by all the theories are fairly accurate. Amongst them, the result obtained by Im-
proved 3D-RPT using item [2(a) of Section [11] for higher accuracy has an error
of only —0.83%.

22.2. Illustrative example — plate vibration

Consider free vibrations of all edges simply supported a rectangular plate,
which occupies a region described by Eq. (3.1)). The simply supported boundary
conditions would get satisfied, if wy is assumed as follows:

o0
= Y

m=1,2,...n=1,2,...

[e.e]
. mmTT . Ny
g W, Sin — sin—=sin Wmnt,

(22.2)

where W, is a constant and wyy,,, is the circular frequency associated with mode
parameters m, n.

Using Eq. (22.2) in governing equation (17.4)), one obtains the frequency

equation:

w2 ph? 2 w2 ph? 5 12—p 502
22. Zmnl77 ) _( ZmelT7 ) ) N i (VR _—mn | (),
@29) () () {10+ [§+ ) e | =

where
<m7rh> 2 (mrh) 2
Amnp = +{— ) -
a b

The non-dimensional frequency @,,, can be defined as: Wy, = wmnhy/p/G.
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The results for a thick square plate (a/b =1, h/a = 0.1, p = 0.3) for Wy,
are presented in Table 3.

From Table 3, for a thick square plate (having h/a = 0.1), it can be seen that
for a higher mode (m = 4, n = 4) the error in the non-dimensional frequency
Wmn for the CPT is 25.96%. Whereas, the corresponding errors are quite small
for other theories: Reddy’s theory (—0.39%), Mindlin’s theory (—1.15%), RPT
(—0.96%), SVRPT (—1.15%), the Improved 3D-RPT (—0.56%). Therefore, the
presented theory (Improved 3D-RPT) results are fairly accurate.

TABLE 3. Non-dimensional @mn (= wmnh/p/G) predominantely bending frequencies for an
isotropic simply supported square plate (a/b =1, h/a = 0.1, p = 0.3) (% errors with respect
to exact theory are indicated in round brackets).

’ o Improved Exact
m | n | CPT [17] Reddy’s Mindlin’s RPT SVRPT | 3D-RPT theory
theory [17] | theory |17] [17] [20] — present f17]
Theory

11| 0.0955 0.0931 0.0930 0.0930 0.0930 0.0931 0.0932
(247%) | (-0.11%) | (—0.22%) | (—0.22%) | (—0.22%) | (—0.11%) | (0.00%)
12| 0.2360 0.2222 0.2219 0.2220 0.2219 0.2223 0.2226
(6.02%) | (—0.18%) | (—0.32%) | (—0.27%) | (—0.32%) | (—0.13%) | (0.00%)
2 12| 0.3732 0.3411 0.3406 0.3406 0.3406 0.3413 0.3421
(9.09%) | (—=0.29%) | (—0.44%) | (—0.44%) | (—0.44%) | (—0.23%) | (0.00%)
13| 0.4629 0.4158 0.4149 0.4151 0.4149 0.4160 0.4171
(10.98%) | (—=0.31%) | (—0.53%) | (—0.48%) | (—0.53%) | (—0.26%) | (0.00%)
2 13| 0.5951 0.5221 0.5206 0.5208 0.5206 0.5223 0.5239
(13.02%) | (—=0.34%) | (=0.63%) | (—=0.59%) | (—=0.63%) | (—=0.31%) | (0.00%)

14| 0.7668 0.6545 0.6520 0.6525 0.6520 0.6546 -
3 3| 0.8090 0.6862 0.6834 0.6840 0.6834 0.6862 0.6889
(17.43%) | (—=0.39%) | (—0.80%) | (—=0.71%) | (—=0.80%) | (—0.39%) | (0.00%)
2 4] 0.8926 0.7481 0.7446 0.7454 0.7447 0.7479 0.7511
(18.84%) | (—0.40%) | (—0.87%) | (—=0.76%) | (—0.85%) | (—0.43%) | (0.00%)

34| 1.0965 0.8949 0.8896 0.8908 0.8896 0.8942 -
1|5 1.1365 0.9230 0.9174 0.9187 0.9174 0.9222 0.9268
(22.63%) | (—0.41%) | (—1.01%) (—0.87) | (—1.01%) | (—0.50%) | (0.00%)

2 | 5| 1.2549 1.0053 0.9984 1.0001 0.9984 1.0040 -
4 14| 1.3716 1.0847 1.0764 1.0785 1.0764 1.0828 1.0889
(25.96%) | (—0.39%) | (—1.15%) | (—=0.96%) | (—1.15%) | (—0.56%) | (0.00%)
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22.3. Illustrative example — stability

Consider all edges of a simply supported rectangular plate, which occupies
a region described by Eq. . The plate carries a lateral load of intensity ¢(x, y),
and, in addition, the plate is also subjected to the in-plane force N, = —N,. The
negative sign associated with N, indicates the compressive in-plane force.

Since in-plane forces are specified and are in equilibrium, equilibrium equa-
tions , are getting satisfied. Therefore, in-plane displacements u,, v,
would not get involved as unknown variables. And Eq. takes the form in
this case as:

(22.4) +2 + ==

Ozt ox20y2 oyt D

84wb 84wb 84wb . 1 _
q o 6x2

N 82w0].

To satisfy simply supported boundary conditions on edges, one can express wy
and ¢ as follows:

oo o0
(22.5) wp = Z Z Cinn sin %,
m=1,2,... n=1,2,...
oo oo
(22.6) q= Z Z Qrmn SID 7Y in @,
m=1,2,...n=1,2, a b

where Cy,,, and ¢, are Fourier constants. Using Eqs. (17.5)), (22.5)), (22.6) in
Eq. (22.4)), one gets:
2
a 39 h
dmn { + N, }

(227)  Cypn = m2r2 1120 F
' "D mb N n*a 2—]\7 14 (8 4+ p) 72 [ m2h? N n2h2\1
» \a mb © 401 —p) \ a? b2

The plate would buckle, when the denominator of Eq. (22.7)) becomes zero and,
as a result, Cy,, tends to infinity. In that case the N, (i.e., the critical value
of N,) when n =1, can be written as:

2D

(228) Ncr = kaCW

where the non-dimensional parameter k., is given by:
<mb a )2
- + -
a mb

(8 4+ p)m? [ m2h? lﬁ '
40(1 — p) a? b2

(22.9) ker =

1+
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As against the non-dimensional k.. given by Eq. ‘@, the corresponding k.,
for a thin plate (as given in |1} p. 389]) is (me + %):, which incidentally happens
to be the numerator of Eq. .

The values of non-dimensional parameter k., for a square plate (a = b) for
various h/b ratios are tabulated in Table 4.

TABLE 4. The values of non-dimensional buckling parameter k., for a square plate (a = b)
for various h/b ratios (% error with respect to the exact theory is shown in round brackets).

Improved
Mindlin’s Reddy’s - Exact
h/b | CPT [26] theory [25] theory3125| E)’]ID)rle)le;‘rﬁ theory |26]
theory
0.0 4.000 4.000 4.000 4.000 4.000
(0.0 %) (0.0 %) (0.0 %) (0.0 %) (0.0 %)
0.05 4.000 3.944 3.944 3.942 3.911
(2.28%) (0.84%) (0.84%) (0.79%) (0.0%)
0.10 4.000 3.786 3.787 3.779 3.741
(6.92%) (1.20%) (1.23%) (1.02%) (0.0%)
0.20 4.000 3.264 3.265 3.241 3.150
(26.98%) (3.62%) (3.65%) (2.89%) (0.0%)

Incidentally, the value of a non-dimensional parameter k., for a square plate
also happens to be the asymptotic value of k.., when a > b.

It can be seen from Table 4 that for a thick square plate (having h/b = 0.2),
if the CPT is used, the value of non-dimensional buckling parameter k.. would
have large error of 26.98%. Wheras, the errors are quite small for other theories:
Mindlin (3.62%), Reddy (3.65%), the Improved 3D-RPT (2.89%). Amongst them
the Improved 3D-RPT has the least error of 2.89%.

22.4. Illustrative example — semi-infinite cantilever plate

In Section[18.2]clamped type I and clamped type II conditions are mentioned.
The illustrative example shows the application of the two types of clamped
boundary conditions.

Consider a semi-infinite cantilever plate occupying a region:

(22.10) 0<z<a —-o0o<y<oo, —h/2<z<h/2

The semi-infinite cantilever plate dimension in y-direction is infinite. The
plate is clamped (the clamping can be either of type I or of type II) at the edge
xz =0.
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There are no constraints on deflection and slope at the edge = = a.
The plate does not carry any lateral load on surfaces z = +h/2.
There are no shear stresses on surfaces z = +h /2.

A shear load of intensity P per unit length is applied uniformly all along the
surface of the edge z = a (i.e., [Vi]z=a = P).

Governing equation: Noting the governing equation (Eq. (17.3)) for the plate
flexure of the Improved 3D-RPT, and noting that the lateral load ¢ is zero in

the present example, the governing equation for the present example can be
stated as:

(22.11) v? 72w, = 0.
Boundary conditions:

1) On the edge x = 0:
(a) If the edge = = 0 is of the clamped type I, then:

ow
22.12 2=0.2=0 =0 d —_— =0.
21 =0t [

(b) If the edge x = 0 is of the clamped type II, then:

ou
99.13 I a & —0.
( ) We=ns=0 =0 an [83] =0, 2=0
2) On the edge = = a:
(22.14) [Mylz—a =0 and [Vi]p=aq = P.

Procedure and solutions: The plate dimension is infinite along the y-direction.
There is no variation along the y-direction in respect of boundary conditions and
loading. Therefore, the problem pertains to the domain of cylindrical bending
of plates (as the problem satisfies the requirements mentioned in |1, p. 4]). As
a result, using Egs. 7, the displacements u, v, w for the problem under

consideration are given by:

22.1 S )
(22.15) “ “ o +h¢28x3’
(22.16) v =0,
2
(22.17) w = wy + h2pg

0x? "
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Also, the solution of Eq. (22.11]) can be assumed to be of the type:

2 3
(22.18) wy = C1 + Co (x)+03 (x) +C4<$) ;
a a a

where constants Cy, Cy, C3, C4 have dimensions of displacement.

Solution of the semi-infinite cantilever plate by the Improved 3D-RPT, when the
edge x = 0 is of the clamped type 1.

Using Eqgs. (22.15)) through (22.18)), and conditions (22.12)), (22.14]), one gets:
_ P e\ LNt (NN e

D [2\a 6\ a 2(1—p)\a h a)|
Using Eq. (22.19), the mid-surface displacement [w],—¢ of the plate is given by:

I OE)|

Using Eq. (22.20)), the mid-surface displacement [w];—q =0 at the edge z = a is
given by:

(22.19) w

Pa?

3D’

Solution of the semi-infinite cantilever plate by the Improved 3D-RPT, when the
edge © = 0 is of the clamped type II.

Using Eqgs. (22.15)) through (22.18)), and conditions (22.13)), (22.14]), one gets:
Pa3[1/z\? 1/2\> 7 A\?/2\? x
92.22 = (E) (2] = (2) (2) (1-2
e o= () 5 (6) () () (-0)
N 1 h\ %z
41—-p)\a) a]
Using Eq. (22.22), the mid-surface displacement [w],—¢ of the plate is given by:
_Pa31x21:ﬂ3+1 AN
D [2\a 6\ a 41 —p)\a/) al
Using Eq. (22.23)), the mid-surface displacement [w];—, =0 at the edge z = a is
given by:

(22.21) [W)a=a, 2=0 =

(22.23) [w]—o

Pa’l 3 h\?
3D 41 —p)y\a/) |

If a typical value of Poison’s ratio p is taken as p = 0.3, then using Eq. (22.24]),
the mid-surface displacement [w]y—q, ;=0 at the edge = a is given by:

(22.24) [W]z=a,2=0 =

3

(22.25) [W]pma, 2—0 = % [1 +1.071 (Z)Q]
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22.5. Comments on results of illustrative example of the semi-infinite cantilever
plate

To the best of the knowledge of the author, the two types of clamped con-
ditions for plates were first mentioned in |10], and there are no references avail-
able wherein both these conditions have been applied together to solve plate
problems.

Therefore, in order to interprete the results, it would be interesting to find
out:

1) How the results obtained using the Improved 3D-RPT would compare with
those obtained using the classical plate theory (CPT).

2) Whether there is any similarity about clamped conditions in the case of plates
(using the Improved 3D-RPT) and in the case of beams (using the theory of
elasticity approach).

22.5.1. Comparison of results obtained using the Improved 3D-RPT with those
obtained using the CPT

Results obtained by the CPT:
If the CPT is used, it is easy to note that:

1) u:fz%,v:(),w:wb.
x
Therefore, in the CPT, both the clamped type I and clamped type II condi-
tions would not differ from each other, and the conditions at the edge z =0
would be given by Eq. (22.12]).
2) The conditions at the edge x = a would be given by Eq. (22.14)).

3) The Eq. (22.11)) would be the governing equation (as w = wp).

Using the preceding information, and noting that the problem pertains to the
domain of cylindrical plate bending, it is easy to show that the solution using

the CPT is given by:
Pa*[1(z\* 1[x\°
= % [2 <2) ~5 (2) } using the CPT.

Using Eq. (22.26)), the mid-surface displacement [w];—q, =0 at the edge z = a
is given by:

(22.26) [w].—o

(22.27) [W]z=a, z=0 =

P 3
3—a using the CPT.
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Comparison of solutions by the Improved 3D-RPT and the CPT, when condition
at the edge x = 0 is of the clamped type I:

From Eqgs. (22.20), (22.26), it is seen that:

1) The mid-surface displacement [w].—o in case of the Improved 3D-RPT, and
that in case of the CPT are identical.

2) Therefore, contrary to the expectation, use of the Improved 3D-RPT shows
that there is no effect of transverse stresses on the mid-surface displace-
ment [w],=o.

Comparison of solutions by the Improved 8D-RPT and the CPT, when condition
at the edge x = 0 1is of the clamped type II:

From Egs. (22.23), (22.26), it is seen that:

1) The mid-surface displacement [w],—o in case of the Improved 3D-RPT in-
cludes an entity (%)2, and as the entity becomes smaller and smaller (i.e., as
the plate becomes thinner and thinner), the mid-surface displacement given

by the Improved 3D-RPT tends towards the mid-surface displacement given by
the CPT.

2) The results obtained by using the clamped type II condition differ significantly
from those obtained by using the clamped type I condition.

It would be interesting to find out whether there is any similarity about
clamped conditions in the case of plates (using the Improved 3D-RPT) and in
the case of beams (using the theory of elasticity approach).

22.5.2. Striking similarities about clamped conditions in case of plates using the
Improved 3D-RPT and in case of beams using the theory of elasticity approach
It may be noted that even though plate and beam problems are of different cat-
egories, there is a good deal of similarities in cylindrical plate bending problems
and beam problems.

Fortunately, a cantilever beam problem has been solved (see |23] pp. 41-46]),
using the theory of elasticity approach, wherein two types of clamped conditions
have been taken into account. It would be worthwhile to look into the beam
problem just mentioned. In [23], the coordinate system and notations used are
different from those used in the present paper. But the beam problem and the re-
sults would be described here using the coordinate system and notations suitable
for discussion in the present paper. The beam occupies the region:

(22.28) 0<z<a —-05<y<05, —h/2<z<h/2

The material properties are the same as those of the plate considered here in
this paper. The moment of inertia of the beam cross-section is I.
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Solution of cantilever beam by the theory of elasticity approach, when condition
at the end x = 0 is of the clamped type I:

The mid-surface deflection [w],—¢ of the beam is given by:

e B

Using Eq. (22.29)), the mid-surface displacement [w],—,, =0 at the beam end
T = a is given by:
Pd?

(2230) [w]x:a,z:O = ﬁ

Solution of cantilever beam by the theory of elasticity approach, when condition
at the end x = 0 is of the clamped type II:

The mid-surface deflection [w],—¢ of the beam is given by:

o ) A ()

Using Eq. (22.32), the mid-surface displacement [ w ] v—a, »—0 at the beam

end x = a is given by:

(2232) wlomaon = o 1 2 (h”

If a typical value of Poison’s ratio p is taken as p = 0.3, then using Eq. (22.32]),
the mid-surface displacement [w];—q, .—0 at the beam end = = a is given by:

Pa? h\ 2
(2233) [w]m:a, 2=0 — Sﬁ |:1 + 0.975 <a> :| .

Striking similarity observed about clamped conditions in case of plates using the
Improved 3D-RPT and in the case of the beams using the theory of elasticity
approach

1) When the plate edge x = 0 and the beam end 2 = 0 both have the clamped
type I conditions:

(a) Mid-surface displacement [w],—¢ in the case of plate given by Eq. (22.20
using the Improved 3D-RPT and in the case of beam given by Eq. (22.29
using the theory of elasticity approach are almost identical except that
plate rigidity D in the case of plate gets replaced by beam rigidity ET
in the case of the beam.
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(b) Similarly, the mid-surface displacement [w];—q .—0 in the case of plate
given by Eq. using the Improved 3D-RPT and in the case of
the beam given by Eq. using the theory of elasticity approach
are almost identical except that plate rigidity D in the case of plate gets
replaced by beam rigidity £ in the case of the beam.

2) When plate edge x = 0 and beam end x = 0 both have clamped type II
conditions:

(a) The mid-surface displacement [w],—¢ in the case of the plate given by
Eq. using the Improved 3D-RPT and in the case of the beam
given by Eq. using the theory of elasticity approach have strong
similarity except for the following:

i) Plate rigidity D in the case of plate gets replaced by beam rigidity
FE1 in the case of the beam.
ii) The last term in square brackets of Eq. (22.23)) differs slightly from
the last term in square brackets of Eq. .
iii) When Poison’s ratio p = 0.3, the numbers in the results presented

for [w]z—q, =0 in Eq. (22.25)) and in Eq. (22.33) are nearly matching.

It can be observed that there are striking similarities of clamped conditions
in the case of plates using the Improved 3D-RPT and in the case of beams using
the theory of elasticity approach (even though the problems belong to different
categories).

Therefore, there are reasons to believe that the results obtained using the
Improved 3D-RPT for the semi-infinite cantilever plate are accurate in each case
when the clamped edge can have the clamped type I condition or the clamped
type II condition.

22.5.3. About the question regarding which clamped condition should be used
Taking a cue from the remarks in |23 p. 46| on the clamped conditions in respect
of beams, the following can be suggested:

1) Both the clamped type I and clamped type II conditions are difficult to realize
in practice.

2) The clamped type II condition would give better estimate of the effects of
transverse stresses on transverse displacement.

The clamped type II condition (for which results are not available in plate
related literature) requires further study.
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22.6. Important observations on the results from the illustrative examples

Following are overall broad observations on results of the illustrative examples
(dealing with flexure, vibrations, stability of plates):

1) Taking into account the information about accuracy of the CPT mentioned
in Section 21] one notes that:

(a) Even though the stresses (including transverse stresses) obtained by the
CPT are reasonably accurate even for thick plates (and Table 2 con-
firms this for the non-dimensional flexural stress 7)), most importantly,
it is relevant to note here the observations of Section In the CPT,
stresses T.z, Tyz, 0, can only be obtained by a tedious indirect man-
ner using the equilibrium equations; whereas, in the Improved 3D-RPT,
and in the exact theories, all the stresses can be obtained directly using
strain-displacement relations and constitutive relations. The results for
o, obtained by the Improved 3D-RPT are fairly accurate.

(b) It can be seen from Table 1 that for a thick plate (having h/a = 0.14) the
result for w obtained by the CPT has a large error of —8.24%. Whereas,
the corresponding error for the Improved 3D-RPT is only (—0.15%).
Therefore, the Improved 3D-RPT results are fairly accurate for displace-
ments.

2) From Tables 1-4 it can be noted that the results obtained by the Improved
3D-RPT in the case of flexure, vibrations, stability are, in general, closer to —
and sometimes marginally superior to — those obtained by theories of Reissner,
Mindlin, Reddy. The Improved 3D-RPT is easy to use.

3) From Sections [22.5.2 and [22.5.3| it can be believed that the results obtained
for both the clamped conditions are accurate.

23. Areas for further studies

1) The study is limited to the isotropic and homogeneous material.
Satisfaction of all the equations, conditions involved in respect of general plate
problems of other materials can be a challenging task. With some efforts, it
should be possible to extend the proposed plate theories to other problems
related to general plate problems of other materials.

2) The clamped type II condition (for which results are not available in plate
related literature) requires further study.
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24. Conclusions

In this paper, “Improved three-dimensional refined plate theory” (Improved
3D-RPT) has been introduced.

1) The Improved 3D-RPT is a three-dimensional displacement based theory,
which can be used for plate flexure, plate vibrations and also when the plate
is under combined action of lateral loads and in-plane forces.

2) (a) The theory takes into account all the stresses appropriately:

i) Bending stresses, in-plane shear stress: linear, as well as, nonlinear
components are included.

ii) Transverse shear stresses: realistic parabolic variation across the
thickness is taken into account satisfying zero transverse stresses
at the surfaces of the plate.

ii) Transverse normal stress: realistic cubic variation across the thickness
is taken into account satisfying transverse normal stress conditions
at plate surfaces.

(b) The theory satisfies all strain-displacement relations.

(c) The theory tries to satisfy, as accurately as possible, all constitutive
relations.

(d) The theory satisfies gross equilibrium equations.

3) The theory uses the concept of targeted displacements, (which are compo-
nents of displacements) which contribute only towards specific moments, shear
forces, and stresses.

The targeted displacements are used to reduce the number of unknown vari-
ables involved.

4) The number of unknown variables involved are the same as those associated
with thin plates, viz. only one in the case of flexure and vibrations; and three
in the case of stability.

5) Boundary conditions:

(a) Previously, in a certain class of axiomatic, higher-order shear deformation
theories, static inconsistencies were observed while modelling the flexural
behaviour of beams, plates and shells with clamped boundary conditions.
The clamped boundary conditions prescribed in this paper do not suf-
fer from such inconsistencies. The clamped type II condition (for which
references are not available in literature) requires further study.

(b) In this paper two types of clamped conditions (i.e., clamped type I and
clamped type II) were introduced. It was observed that there are striking
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similarities about the clamped conditions in the case of plates using the
Improved 3D-RPT and in the case of beams using the theory of elasticity
approach.

6) There are some noteworthy significant similarities of the Improved 3D-RPT
with the CPT and other theories, and the knowledge gained over in deal-
ing with these theories would prove to be useful.

(a) Plate flexure: The governing equation of the Improved 3D-RPT has strik-
ing similarity with that of the CPT save for the appearance of wy in
the governing equation of the Improved 3D-RPT, whearas w appears
in the context of the CPT. Except for the clamped type II boundary
conditions, all other boundary conditions of the Improved 3D-RPT have
good amount of similarity with those of the CPT.

(b) Plate vibrations: There is significant similarity of the governing equation
of the Improved 3D-RPT with the following earlier theories:

i) Mindlin’s theory,
ii) Levinson’s theory, and
iii) “A single variable refined theory for free vibrations of a plate using
inertia related terms in displacements” (SVRPT).

(c) Plate under combined action of lateral loads and specified in-plane forces:
The governing equation for the plate under combined action of lateral
loads and in-plane forces in the Improved 3D-RPT has noteworthy sig-
nificant similarity with the corresponding equation in respect of the thin
plate obtained by Saint-Venant.

7) Results of the illustrative examples obtained by the Improved 3D-RPT bring
out the efficacy of the theory. The results obtained are, in general, closer to
those obtained by the theories of Reissner, Mindlin, Reddy. This is remarkable
in view of the simplicity of the Improved 3D-RPT in respect of governing
equations, boundary conditions.

In short, the “Improved three-dimensional refined plate theory” (Improved
3D-RPT) presented here is simple, easy to use, accurate, three-dimensional plate
theory.
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