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This study introduces a simplified approach to assess the buckling and
static bending of advanced composite beams, including those composed of function-
ally graded materials (FGMs) with various porosity models. The technique utilizes
a straightforward integral quasi-3D approach based on the advanced shear defor-
mation theory. This approach offers several advantages: it simplifies the analysis by
reducing the number of unknowns and equations required, improves accuracy by con-
sidering the stretch effect across the entire depth of the beam, resulting in more reli-
able results, and accurately represents shear by satisfying the zero-traction boundary
conditions on the beam’s surfaces without the need for a shear correction factor.
Additionally, it captures the parabolic pattern of transverse shear strain and stress
throughout the depth of the beam. The governing equations are obtained by applying
the concept of virtual work, and the Navier solution is employed to calculate analyti-
cal solutions for the buckling and static bending of FGM porous beams under different
boundary conditions. The approach is in line with and builds upon existing research
on FGMs and other sophisticated composite beams, further enhancing its validity
and reliability. Finally, computational analyses demonstrate how the distribution of
materials, such as power-law functionally graded materials (FGMs), geometry, and
porosity, affect the deflections, stresses, and critical buckling load of the beam.
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1. Introduction

Functionally graded materials (FGMs) have been an engineering topic
for around 30 years since their concept was first proposed in 1987. The scientific
and engineering community working on FGM has become an important and con-
tinually growing part of the materials science and engineering community. FGMs
are found in innumerable structures, systems, tools, and objects today, from mi-
croelectromechanical (MEMS) and other microstructures to space shuttles be-
cause they contribute to making these objects cheaper, safer, more efficient, and
sometimes simply feasible. In recognition of their importance, they have become
regulated by many standards set by engineering and scientific associations [1, 2].

The unique properties of FGMs have attracted significant research inter-
est in their bending behaviour under various loading conditions. This includes
static bending, free vibration analysis, and buckling behaviour of FGM beams,
plates, and shells [3]. Literature suggests that the FGM plate analysis can be
approached through various theoretical frameworks, including the classical plate
theory (CPT) [4, 5]. The first-order shear deformation theory (FSDT) [6, 7], the
higher-order shear deformation theory [8–10], the quasi-3D theory and the Car-
rera Unified Formulation (CUF) [11, 12]. To determine the spatial variation of
material properties in functionally graded materials and structures, mathemat-
ical laws such as the exponential law [13], sigmoid law [14], and power law [15]
are used.

According to the literature, some work using a higher shear deformation plate
theory (HSDT) with integral terms to determine the behaviour of plates in FGM
has been published. Menasria et al. [16] investigate the free vibration behaviour
of functionally graded sandwich plates (FGSPs) with a ceramic foam core sup-
ported by a viscoelastic foundation. The study specifically examines the impact
of temperature variations on the vibration characteristics of these structures. The
analysis incorporates the effects of damping and explores various configurations
of FGSPs. A quasi-3D theory is employed to reduce the number of displacement
variables and simplify the governing equations through the use of integral terms.
Two models are considered to account for the non-uniform properties of the ce-
ramic foam core. Himeur et al. [17] examined the bending behaviour of function-
ally graded (FG) plates under various loading conditions using a novel quasi-3D
theory. The theory incorporates the combined influence of non-uniform Winkler–
Pasternak foundations, where two foundation parameters change simultaneously
across the plate’s surface. This approach builds upon existing quasi-3D theo-
ries by explicitly considering the coupling effect between the variable foundation
and the diverse loading scenarios acting on the FG plates. Many studies have
been conducted recently on FG beams. Belarbi et al. [18] conducted a study
on the flexural analysis of Ti-6Al-4V/ZrO2 functionally graded sandwich plates
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subjected to combined thermal and mechanical loading, utilising an exponential-
cubic-sinusoidal integral shear deformation theory. The proposed formulation
offers a parabolic distribution of transverse shear stresses, eliminating the need
for additional factors in the model. The analysis considers various sandwich
plate configurations with different layer thicknesses and material types, where
the FG layers exhibit a continuous and smooth variation based on exponential
and power-law functions. Berkia et al. [19] investigated the mechanical buck-
ling behaviour of bi-directional functionally graded sandwich beams (BFGSW)
under various boundary conditions using a quasi-3D beam theory that incor-
porates an integral term within the displacement field. However, the covering
layers of the beams vary smoothly along the beam length and thickness direc-
tions. Houri et al. [20] investigated the wave dispersion behaviour in porous FG
carbon nanotube-reinforced composite (CNTRC) beams. These beams consist of
four different patterns of single-walled carbon nanotubes (SWCNTs) distributed
within a polymer matrix. The material properties of the CNTRC beams are
estimated using a mixture rule. A novel aspect of this study is the introduc-
tion of three porosity models that describe the porosity distributions within the
matrix. Additionally, a three-unknown integral higher-order shear deformation
theory (HSDT) is employed to analytically model the CNTRC beams, incorpo-
rating a new shape function that characterises the distributions of shear stresses
and strains.

Various publications have explored the effect of porosity on the behaviour of
FGM beams, including Ghazwani et al. [21] studied the nonlinear forced vibra-
tions of sandwich beams made from porous FGMs with a viscoelastic core layer;
their analysis employs higher-order Zig-Zag theories to account for both normal
and shear deformations. Slimani et al. [22] developed a quasi-three-dimensional
(3D) refined theory based on a novel higher-order shear deformation approach
to analyse the static bending behaviour of advanced composite plates, such as
functionally graded plates, with two distinct types of porosity distribution. This
approach reduces the number of unknowns and governing equations by incorpo-
rating the effect of thickness stretching into the transverse displacement, bend-
ing, and shear, using a newly defined shape function. Tamrabet et al. [23]
studied the impact of porosity on the buckling behaviour of a thick functionally
graded sandwich plate subjected to various boundary conditions and in-plane
loads. The formulation is based on a newly developed sandwich plate structure,
utilising a FGM characterised by a modified power law function with both sym-
metric and asymmetric configurations. Four distinct porosity distributions are
examined, and their variations are aligned with the material property gradient
across the thickness of the face sheets. Additionally, the study considers a sec-
ond model of the sandwich plate, which incorporates a metal foam core with
functionally graded material face sheets.
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This study aims to create a novel 2D and quasi-3D HSDT shear deformation
theory incorporating integral terms. This theory is used to analyse the static
bending and buckling characteristics of beams made of FGM with porosities.
Furthermore, the study takes into account the impact of stretching. The novelty
of this research lies in using a quasi-3D HSDT theory that accounts for the ef-
fect of transverse stretching, which is generally not considered in conventional
2D shear deformation theories. This approach reduces the number of variables to
three, unlike other similar theories that often involve four or more variables, thus
simplifying the problem by incorporating a simple integral HSDT. Additionally,
a displacement field with a coefficient n is introduced. This coefficient facilitates
the transition from 2D to quasi-3D theories without any discontinuity and allows
for a more detailed examination of the equilibrium and stability of FG beams.
The suggested beam is equipped with four different types of porous distribu-
tion. It is subjected to static bending and buckling tests, with various boundary
conditions being considered. The beam is believed to possess consistent material
qualities (isotropic) at every specific point. The Young modulus of the beam
varies across its thickness in accordance with a power law that depends on the
volume fractions of the materials present. This theory imposes equilibrium condi-
tions on the upper and lower surfaces of the beam, eliminating the need for shear
correction components. To examine the beam’s behaviour, the governing equa-
tions are obtained by applying the principle of virtual work and subsequently
solved using the Navier method. To ascertain the precision and efficacy of this
novel theory, the computed outcomes are juxtaposed with those derived from
existing well-established theories. In addition, the study presents and discusses
an extensive range of parametric studies to investigate the impact of different
factors on the behaviour of the system.

2. Material properties of imperfect FGM beams

The FG beam’s varied boundary conditions of length (l) and thickness (h)
are exposed, where the material composition varies along the z direction with
the FG index k (Fig. 1). The mechanical properties of the FG beam, such as
Young’s modulus E, Poisson’s ratio υ, and shear modulus G, change as the
material composition changes.

In this study, FGM beams with the power-law function (P-FGM), the volume
of ceramic is obtained using the following formula:

(2.1) V (z) =

(
1

2
+
z

h

)k
.
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Fig. 1. Geometry and coordinate system of the imperfect FG beam.

In this case, k is the power-law index, and h is the thickness of the beam.
The material properties of a P-FGM can be determined as:

(2.2) P (z) = P2 + (P1 − P2)V (z).

The porosity effect is investigated. Researchers have proposed numerous mod-
els of porosity distribution to compute the effective material properties of porous
FGM beams; four porosity models are used (Fig. 1) by Patil et al. [24].

Porous material properties for various porosity patterns and the porosity
coefficient (Ω) are given by:
Imperfect I:

P (z) = (Pc − Pm)Vc + Pm −
Ω

2
(Pc + Pm),(2.3a)

Imperfect II:

P (z) = (Pc − Pm)Vc + Pm −
Ω

2
(Pc + Pm)

(
1− 2|z|

h

)
,(2.3b)

Imperfect III:

P (z) = (Pc − Pm)Vc + Pm −
Ω

2
(Pc + Pm)

(
1

2
+
z

h

)
,(2.3c)

Imperfect IV:

P (z) = (Pc − Pm)Vc + Pm −
Ω

2
(Pc + Pm)

(
2|z|
h

)
.(2.3d)

3. Theoretical formulations of the FG beam

3.1. Kinematics and strains

A new reformulation has been developed to give the displacement field of the
conventional HSDT:
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(3.1)
u(x, z) = u0(x)− z ∂w0

∂x
+ f(z)ϕx(x),

w(x, z) = w0(x) + ng(z)θ(x),

u0, w0, θ, ϕx are the four unknown displacements of the mid-plane of the beam.
By considering that ϕx =

∫
θ (x) dx and taking into account the stretching effect:

(3.2)
u(x, z) = u0(x)− z ∂w0

∂x
+ kaf(z)

∫
θ(x) dx,

w(x, z) = w0(x) + n g(z)θ(x).

The integrals used in the above equations shall be resolved by a Navier-type
method and can be given as follows:

(3.3)
∫
θ dx = A′

∂θ

∂x
,

where the coefficients A′ is expressed according to the type of solution used, in
this case, via Navier. Therefore, A′ and ka are expressed as follows:

(3.4) A′ = − 1

α2
, ka = −α2 and α =

mπ

a
,

f(z) represents the shape function defining the distribution of transverse shear
deformation; it is represented as [25]:

(3.5) f(z) = z

(
1− 4

3

z2

h2

)
and g(z) =

2

15

df(z)

dz
,

n is a real number and is given as follows:

(3.6) n =

{
0 for 2D,

1 for quasi-3D.

Based on the elasticity theory, the non-zero linear strain components obtained
from Eqs. (3.5) and (3.6) are:

(3.7a) εx = ε0x + zkbx + f(z)ksx, {γxz} = f ′(z){γ0xz}+ g(z){γ1xz}, εz = g′(z)ε0z,

where

(3.7b)

{ε0x} =

{
∂u0
∂x

}
,

{
kbx
ksx

}
=

−
∂2w0

∂x2

k1θ

 ,

{γ0xz} =

{
k1

∫
θ dx

}
, {γ1xz} =

{
∂θ

∂x

}
,

ε0z = θ.
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Assuming that the perfect and imperfect FG beam material follows Hook’s
law, the linear elastic constitutive equations at a point are:

(3.8)


σx
σz
τxz

 =

C11 C13 0
C13 C33 0
0 0 C55


εx
εz
γxz

 .

The Cij (i, j = 1, 3, 5) expressions in terms of engineering constants depend-
ing on the normal strain εz, are given below

• Case of 2D (εz = 0), then Cij are:

(3.9a) Cij = E (i = 1); Cii =
E(z)

2(1 + ν(z))
(i = 5).

• Case of quasi-3D (εz 6= 0), then Cij are:

(3.9b)

Cii =
E(z)

1− ν2(z)
(i = 1, 3),

Cij =
E(z)ν(z)

1− ν2(z)
(i, j = 1, 3),

Cii =
E(z)

2(1 + ν(z))
(i = 5).

3.2. Governing equations

The principle of virtual work is utilised here to determine the governing
equations; the variation of strain energy of the beam is calculated by

(3.10) δU =

∫
A

[Nxδε
0
x+Nzδε

0
z+M b

xδk
b
x+M s

xδk
s
x+Qxzδγ

0
xz+Sxzδγ

1
xz] dA = 0,

where A is the surface and stress resultants N , M , Q, and S are the force and
moment components represented in the following forms:

(3.11)


Nx

M b
x

M s
x

 =

h/2∫
−h/2

(σx)


1
z

f(z)

 dz, Nz =

h/2∫
−h/2

σzg
′(z) dz,

{
Sxz
Qsxz

}
=

h/2∫
−h/2

(τxz)

{
g(z)
f ′(z)

}
dz.

The variation of potential energy of the applied mechanical loads can be
expressed as
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δV = −
∫
A

qδ(w0(x) + g(z)θ(x)) dA(3.12)

−
∫
A

N0
d(w0 + g(z)θ(x))

dx

dδ(w0 + g(z)θ(x))

dx
dA.

Substituting the expressions from Eqs. (3.10) and (3.12) of δU and δV , the
variation of the potential energy of the beam can be expressed as:

(3.13) δU − δV

=

∫
A

[Nxδε
0
x +Nzδε

0
z +M b

xδk
b
x +M s

xδk
s
x +Qδxzγ

0
xz + Sδxzγ

1
xz] dA

−
∫
A

qδw0 dA−
∫
A

qg(z)δθ dA

−
∫
A

N0
d(w0 + g(z)θ(x))

dx

dδ(w0 + g(z)θ(x))

dx
dA = 0.

Integrating by parts and collecting the coefficients of δu0, δv0, δw0, and δθ,
from Eqs. (3.7) into Eqs. (3.9), the following governing equations of the beam
are obtained:

(3.14)

δu0 :
∂Nx

∂x
= 0,

δw0 :
∂2M b

x

∂x2
+ q +N0

∂2w

∂x2
= 0,

δθ : −Nz − k1M s
x + k1A

′∂Qxz
∂x

+
∂Sxz
∂x

+ qg(z) +N0g(z)2
∂2w

∂x2
= 0.

Using Eqs. (3.7), (3.8) and (3.9b), the stress resultants are obtained as:
N
M b
x

M s
x

 =

 A B Bs

B D Ds

Bs Ds Hs


ε0x
kbx
ksx

+

 LLa
R

 εz0,(3.15a)

{
Q
S

}
=

[
F s Xs

Xs As

]{
γ0

γ1

}
, Nz = Raε0z + L(ε0x) + La(kbx) +R(ksx),(3.15b)

where

{A B D Bs Ds Hs}(3.15c)

=

h/2∫
−h/2

λ(z)[1, z, z2, f(z), zf(z), f2(z)]


1−ν
ν

1
1−2ν
2ν

 dz,
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S = {Sxz}, Q = {Qxz},


L
La

R
Ra

 =

h/2∫
−h/2

λ(z)


1
z

f(z)
g′(z)1−vv

 g′(z) dz,(3.15d)

F s = F s44, As = As44, Xs = Xs
44,

(F s44, X
s
44, A

s
44) =

h/2∫
−h/2

(
E(z)

2(1 + v)
[f ′2(z), f ′(z)g(z), g2(z)]

)
dz.(3.15e)

Substituting Eqs. (3.7), (3.15), (3.16) into Eqs. (3.14), the equilibrium equa-
tions are defined by:

(3.16)

δu0 : A
∂2u0
∂x2

−B∂
3w0

∂x3
+ (Bsk1 + L)

∂θ

∂x
= 0,

δw0 : B
∂3u0
∂x3

−D∂
4w0

∂x4
+ (Ds

11k1 + La)
∂2θ

∂x2
+ q +N0

∂2w

∂x2
= 0,

δθ : −(L+ k1B
s
11)

∂u0
∂x

+ (La + k1D
s
11)

∂2w0

∂x2
− (k21H

s
11 + 2k1R+Ra)θ

+ (k21A
′2F s44 + k1A

′Xs
44)

∂2θ

∂x2
+ (As44 + k1A

′Xs
44)

∂2θ

∂x2

+ qg(z) +N0g(z)2
∂2w

∂x2
= 0.

The critical buckling load is determined using the stability equations, which
are formulated based on the principle of virtual forces and the criteria of adjacent
equilibrium state.

3.3. Exact solution for various boundary conditions of FG beam

The admissible functions in Table 1 can be used to construct the exact solu-
tion of Eqs. (3.17) for FGM beams under different boundary conditions [23],

(3.17)


u0(x, y)
w0(x, y)
θ(x, y)

 =


Um

∂Xm(x)
∂x Yn(x)

Wm Xm(x)Yn(x)
θm Xm(x)Yn(x)

 ,

where Um, Wm, and θm are the unknown displacement coefficients.

Table 1. Admissible functions Xm, Yn.

Boundary conditions
Admissible functions Xm and Yn

Xm Yn

Simply-Supported (S-S) sin(αx) sin(λx)

Clamped-Clamped (C-C) sin(αx) cos(αx) sin(λx) sin(λx)

Clamped-Free (C-F) cos2(αx)(sin2(αx) + 1) sin2(λx)
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By replacing the extensions of Um,Wm and θm of Eqs. (3.16) in the equations
of equilibrium (3.15), the analytical solutions can be obtained from

(3.18)

 a11 a12 a13
a12 a22 +Ncr a23
a13 a23 a33


Umn
Wmn

θmn

 =


0
0
0

 ,

in which:

(3.19)

a11 = A11L12, a21 = −BL13,

a12 = −BL12, a22 = DL13,

a13 = Bsk1L12 − LL12, a31 = Bsk1L13 − LL13,

a23 = −Dsk1L13 + LaL13, a32 = −Dsk1L13 + LaL13,

a33 = Hs
11k

2
1L9 − 2k1RL13 +R+A2F s44k

2
1L13 − 2AXs

44kL13 +As44L13,

with

(3.20) Ncr = N0L9

and

(3.21)

(α1) =

b∫
0

l∫
0

(XmYm)XmYm dx dy,

(α6, α12) =

b∫
0

l∫
0

(X ′mYm, X
′′′
mYm)X ′mYm dx dy, b = 1,

(α9, α11, α13) =

b∫
0

l∫
0

(X ′′mYm, X
′′
mY
′′
m, X

′′′′
m Ym)XmYm dx dy.

The transverse load q(x) is also expanded in the Fourier series as

(3.22) q =
∞∑
m=1

qm sin
mπx

l
.

The Fourier coefficient (qm) for sinusoidal and uniform loads are as follows:

(3.23) q =

q0 sinusoidal load (m = 1),

4q0
mπ

uniform load (m = 1, 3, 5, . . . ,∞).
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For the bending problem, put N0 = 0, and for the buckling problem, put
q = 0.

• Bending analysis

(3.24) [K]{∆} = {f}.

• Buckling analysis

(3.25) {[K]−N0[N ]}{∆} = {0},

where [K] is the stiffness matrix, [N ] is the geometric matrix due to the axial
forces, {f} is the force vector, {∆} is the vector of unknowns, and N0 is the
axial force.

4. Numerical results and discussion

4.1. Convergence and validation study

In this paper, many numerical examples are provided and discussed to verify
the accuracy of the quasi-3D shear deformation theory used to analyse the static
bending and buckling of the FGM beam for various boundary conditions.

The properties of the materials used are:

• Ceramic (Pc: Alumina, Al2O3): Ec = 380 GPa; υc = 0.3.

• Metal (Pm: Aluminum, Al): Em = 70 GPa; υm = 0.3.

The material properties of the FG beam vary continuously in the thickness
direction according to the power law (P-FGM).

For simplicity, displacements, stresses and critical buckling loads are pre-
sented in the non-dimensional form:

(4.1)

w̄ =
100Emh

3

q0l4
w

(
x =

l

2
, z = 0

)
,

ū =
100Emh

3

q0l4
u

(
x = 0, z = −h

2

)
,

σ̄xx(z) =
h

q0l
σx

(
x =

l

2
, z =

h

2

)
, τ̄xz(z) =

h

q0l
τxz

(
x = 0, z = 0

)
,

Ncr = N0
12l2

Emh3
.

Table 2 presents the maximum nondimensionalised displacements and stresses
of the beam for various power law index values and a length-to-thickness (l/h)
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Table 2. Non-dimensional displacements and stresses of functionally graded beams (l = 5h).

k Theory Model
Sinusoidal load Uniform load

ū w̄ σ̄x τ̄zx ū w̄ σ̄x τ̄zx

0
ceramic

Present 2D HSDT 0.7251 2.5019 3.0916 0.4768 0.9398 3.1653 3.8020 0.7333
Present 3D HSDT 0.7033 2.2829 2.7730 0.4291 0.9080 2.8951 3.4120 0.6599
Sayyad [26] RSDT 0.7266 2.5004 3.0979 0.5072 0.9420 3.1635 3.8084 0.7764
Reddy [27] HSDT 0.7251 2.5020 3.0916 0.4769 0.9397 3.1654 3.8028 0.7305

Timoshenko [28] FSDT 0.7129 2.5023 3.0396 0.3183 0.9210 3.1057 3.7501 0.4922
Bernoulli–Euler [29] CBT 0.7129 2.2693 3.0396 – 0.9210 2.8783 3.7501 –

1

Present 2D HSDT 1.7795 4.9457 4.7856 0.5241 2.3037 6.2594 5.8832 0.8011
Present 3D HSDT 1.6925 4.5110 4.2472 0.5122 2.1856 5.7207 5.2250 0.7579
Sayyad [26] RSDT 1.7819 4.9432 4.7964 0.543 2.3074 6.2563 5.8957 0.8288
Reddy [27] HSDT 1.7793 4.9458 4.7856 0.5243 2.3037 6.2594 5.8850 0.8031

Timoshenko [28] FSDT 1.7588 4.6979 4.6979 0.5376 2.2722 6.1790 5.7960 0.8313
Bernoulli–Euler [29] CBT 1.7588 4.6979 4.6979 – 2.2722 5.7746 5.7960 –

2

Present 2D HSDT 2.4048 6.3754 5.6002 0.4368 3.1130 8.0677 6.8820 0.8201
Present 3D HSDT 2.2725 5.7379 4.9624 0.4269 2.9344 7.2765 6.1056 0.7760
Sayyad [26] RSDT 1.7819 4.9432 4.7964 0.543 3.1174 8.0666 6.8971 0.8485
Reddy [27] HSDT 2.4048 6.3754 5.6004 0.5521 3.1128 8.0677 6.8842 0.8446

Timoshenko [28] FSDT 2.3794 6.2601 5.4356 0.6978 3.0739 7.9253 6.7678 1.0791
Bernoulli–Euler [29] CBT 2.3794 5.8346 5.4856 – 3.0739 7.4003 6.7678 –

5

Present 2D HSDT 2.8643 7.7722 6.6054 0.3856 3.7101 9.8280 8.1100 0.7398
Present 3D HSDT 2.7024 6.8041 5.7982 0.3768 3.4893 8.6286 7.1326 0.7000
Sayyad [26] RSDT 2.4078 6.3745 5.6149 0.5553 3.7179 9.8414 8.1331 0.7654
Reddy [27] HSDT 2.8644 7.7723 6.6057 0.5314 3.7098 9.8281 8.1127 0.8114

Timoshenko [28] FSDT 2.8250 7.5056 6.4382 0.9942 3.6496 9.4987 7.9430 1.5373
Bernoulli–Euler [29] CBT 2.8250 6.8994 6.4382 – 3.6496 8.7508 7.9430 –

10

Present 2D HSDT 2.9990 8.6530 7.9078 0.4223 3.8861 10.938 9.7128 0.6715
Present 3D HSDT 2.8432 7.5315 6.9432 0.4127 3.6709 9.5508 8.5406 0.6353
Sayyad [26] RSDT 3.0054 8.6547 7.93 0.456 3.9858 10.94 9.7345 0.6947
Reddy [27] HSDT 2.9989 8.6530 7.9080 0.4224 3.8861 10.938 9.7141 0.6448

Timoshenko [28] FSDT 2.9488 8.3259 7.7189 1.232 3.8096 10.534 9.5231 1.9050
Bernoulli–Euler [29] CBT 2.9488 7.5746 7.7189 – 3.8096 9.6072 9.5231 –

∞
metal

Present 2D HSDT 3.9363 13.582 3.0916 0.4768 5.1018 17.183 3.8020 0.7482
Present 3D HSDT 3.8178 12.393 2.7730 0.4660 4,9290 15.716 3.4120 0.7079
Sayyad [26] RSDT 3.9444 13.574 3.098 0.5072 5.1133 17.173 3.8084 0.7741
Reddy [27] HSDT 3.9363 13.582 3.0916 0.4769 5.1021 17.183 3.8028 0.7305

Timoshenko [28] FSDT 3.8702 12.552 3.0396 0.3183 5.0000 15.912 3.7501 0.4922
Bernoulli–Euler [29] CBT 3.8702 12.319 3.0396 – 5.0000 15.625 3.7501 –
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ratio of 5. To facilitate comparison, we specifically generated numerical re-
sults for a supported FG beam using different theories: RSDT proposed by
Sayyad [26], HSDT by Reddy [27], FSDT by Timoshenko [28], and CBT [29].
It is observed from Table 2 that the transverse displacement reaches its maxi-
mum value when k = ∞, while it is minimised when k = 0. This behaviour is
attributed to the increased flexibility of FG beams with higher power-law indices.

The second validation exercise scrutinised the validity of the current theo-
retical model by evaluating the buckling behaviour of a supported, functionally
graded higher-order beam under the axial force (N0). The study presents numeri-
cal data for the non-dimensional critical buckling load (Ncr) in Table 3, reflecting
various power law indices and l/h ratios of 5 and 10. The findings demonstrate
a high degree of concordance with the results reported by Sayyad et al. [26],
Li and Batra [30], Nguyen et al. [31], and Vo et al. [32]. An analysis of Table 3
reveals that an increase in the power law index (k) corresponds to a reduction
in the critical buckling load. Additionally, it is noted that the non-dimensional
critical buckling load is greater for slender, thin beams and lesser for thicker
beams. In contrast, the dimensional critical buckling load exhibits the opposite
trend, being higher for thicker beams and lower for thinner beams.

Table 3. Non-dimensional critical buckling load (Ncr) of simply supported functionally
graded beams.

l/h Theory
Power law index (p)

0 (ceramic) 1 2 5 10 ∞ (metal)

5

Present 2D 48.5957 24.5837 19.0709 15.6436 14.0512 8.95187
Present 3D 49.6392 25.3720 19.8365 16.4111 14.6969 9.14404
Sayyad [26] 48.6260 24.5966 19.0738 15.6220 14.0485 8.95730

Li and Batra [30] 48.8350 24.6870 19.2450 16.0240 14.4270 –
Nguyen et al. [31] 48.8350 24.6870 19.2450 16.0240 14.4270 –

Vo et al. [32] 48.8372 24.6898 19.2479 16.0263 14.4286 –
Vo et al. [32] 48.8401 24.6911 19.1605 15.7400 14.1468 –

10

Present 2D 52.2377 26.1408 20.3663 17.0818 15.4993 9.62275
Present 3D 52.5388 26.6412 20.9111 17.5600 15.8360 9.67820
Sayyad [26] 52.2463 26.1443 20.3669 17.0750 15.4982 9.62420

Li and Batra [30] 52.3090 26.1710 20.4160 17.1920 15.6120 –
Nguyen et al. [31] 52.3090 26.1710 20.4160 17.1940 15.6120 –

Vo et al. [32] 52.3085 26.1728 20.4187 17.1959 15.6134 –
Vo et al. [32] 52.3082 26.1727 20.3936 17.1118 15.5291 –

Table 4 serves as a validation of the current theory’s efficacy in the buck-
ling analysis of P-FGM beams under various boundary conditions, including
Simply-Supported (S-S), Clamped-Clamped (C-C), and Clamped-Free (C-F).
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The non-dimensional critical buckling load (Ncr) for P-FGM beams across these
conditions has been compared. The normalised buckling loads calculated using
this theory have been evaluated against the results published by Kahya and Tu-
ran [33], Nguyen et al. [31]. The analysis of Table 4 indicates that the findings
from this theory align closely with those from other theories. It is observed that
the clamped (C-C) beams demonstrate the highest buckling loads, in contrast
to the cantilever (C-F) beams, which show the lowest. Additionally, an increase
in the power law index is associated with a decrease in normalised buckling
loads, confirming the current theory’s capability to accurately determine the
critical buckling loads of P-FGM beams under varying boundary conditions.

Table 4. Comparison of the normalised buckling loads of functionally graded beams
with different boundary conditions (l/h = 5).

Boundary
conditions Theory

k

1 2 5 10 ∞
Present 2D 48.5957 24.5837 19.0709 15.6436 14.0512 8.95187

S-S

Present 3D 49.6392 25.372 19.8365 16.4111 14.6969 9.14408
Sayyad [26] 48.626 24.5966 19.0738 16.622 14.0485 8.95730

Kahya and Turan [33] 48.5907 24.5815 19.1617 15.9417 14.3445 8.95100
Nguyen et al. [31] 48.8406 24.6894 19.1577 15.7355 14.1448 –

C-C

Present 2D 152.148 79.4832 60.8785 46.8871 40.9883 28.0272
Present 3D 171.629 89.382 69.6172 55.9988 49.4489 31.6159
Sayyad [26] 154.484 79.739 61.9488 49.5646 42.7493 27.9160

Kahya and Turan [33] 151.943 79.3903 61.7449 49.5828 43.5014 27.9890
Nguyen et al. [31] 154.561 80.5940 61.7666 47.7174 41.7885 –

C-F

Present 2D 13.0542 6.5362 5.0958 4.2906 3.8527 2.3807
Present 3D 14.2703 6.8319 5.2547 4.4028 3.9351 2.3945
Sayyad [26] 13.0719 6.557 5.0986 4.2931 3.8512 2.3819

Kahya and Turan [33] 13.0594 6.5352 5.0981 4.2926 3.897 2.4057
Nguyen et al. [31] 13.0771 6.5427 5.0977 4.2772 3.882 –

4.2. Parametric study and discussions – porosity effect

Table 5 is related to the effect of porosity, various porosity patterns and both
the HSDT theory 2D and quasi-3D on the displacement, axial and tangential
stresses of the FGM beam under uniform and sinusoidal loads of the supported
FGM porous beam. It is clear that the augmentation of the imperfection param-
eter Ω leads to a reduction in rigidity of the FGM beam, therefore increasing the
dimensionless displacement and axial and tangential stresses of the FGM beam
for both the HSDT theory 2D and quasi-3D.
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Table 5. Effect of porosity coefficient on displacement, axial and tangential stresses
of the FGM beam under uniform and sinusoidal loads (k = 2, l/h = 5).

Ω Porosity Theory
Sinusoidal load Uniform load

ū w̄ σ̄x τ̄zx ū w̄ σ̄x τ̄zx

0.1

Imperfect I
2D 4.0117 10.0092 7.5654 0.65966 3.1000 7.90842 6.1578 0.42978
3D 3.7664 9.01997 6.7400 0.59434 2.9168 7.11256 5.4770 0.45683

Imperfect II
2D 3.3627 8.60362 7.1118 0.62666 2.5978 6.79941 5.7872 0.40840
3D 3.1638 7.72134 6.3028 0.57909 2.4501 6.08864 5.1234 0.42814

Imperfect III
2D 3.2747 8.51557 6.8494 0.66616 2.5298 6.72963 5.5728 0.43398
3D 3.0878 7.67235 6.0708 0.61833 2.3912 6.05000 4.9350 0.45383

Imperfect IV
2D 3.6552 9.26416 7.2652 0.70298 2.8242 7.31949 5.9102 0.45776
3D 3.4390 8.38694 6.4682 0.64585 2.6630 6.61344 5.2574 0.48142

0.2

Imperfect I
2D 5.7165 13.5423 8.8018 0.64338 4.4190 10.6970 7.1596 0.41928
3D 5.3374 12.2015 7.9040 0.52656 4.1333 9.62117 6.4234 0.46753

Imperfect II
2D 3.6675 9.24922 7.3616 0.57274 2.8338 7.31014 5.9938 0.37352
3D 3.4438 8.25355 6.5216 0.52000 2.6669 6.50830 5.3008 0.39541

Imperfect III
2D 3.4542 9.01722 6.8112 0.661 2.6685 7.12642 5.5434 0.43068
3D 3.2579 8.11411 6.0346 0.60717 2.5232 6.39835 4.9044 0.45303

Imperfect IV
2D 4.4286 10.9440 7.8216 0.7388 3.4227 8.64475 6.3612 0.48090
3D 4.1562 9.94443 7.0002 0.65798 3.2186 7.84152 5.6896 0.51429

0.3

Imperfect I
2D 10.293 22.6130 11.947 0.61458 7.9611 17.8528 9.7118 0.40056
3D 9.5378 20.4186 10.963 0.30961 7.3837 16.1000 8.9024 0.52590

Imperfect II
2D 4.0504 10.0478 7.6456 0.50518 3.1298 7.94198 6.2262 0.32970
3D 3.7947 8.90770 6.7690 0.44731 2.9389 7.02406 5.5018 0.35374

Imperfect III
2D 3.6547 9.58325 6.7718 0.65494 2.8232 7.57418 5.5106 0.42680
3D 3.4480 8.61043 5.9928 0.59388 2.6706 6.78976 4.8722 0.45216

Imperfect IV
2D 5.6230 13.4964 8.6956 0.779 4.3469 10.6580 7.0694 0.50682
3D 5.2595 12.3059 7.8458 0.65383 4.0725 9.70347 6.3744 0.55838

The influence of porosities distribution on critical buckling load Ncr of FG
beams for volume fraction index = 2 for the HSDT theory 2D and quasi-3D is
depicted in Table 6. The porosity coefficient is chosen as Ω egal (0.1 to 0.4).
It is clear that the buckling load obtained for imperfect beams (Ω = 0.1) is
bigger than the other values of the porosity coefficient for the four distributions
of porosity calculated. The critical buckling loads decreased as the porosity pa-
rameters increased for functionally graded porous beams for both used HSDT
theories. This is because the mechanical properties, such as Young’s modulus,
are affected by the porosity, leading to a decrease in the beam’s ability to resist
buckling loads.

Table 7 shows buckling loads Ncr of various imperfections of FG porous
beams with various boundary conditions for volume fraction index k = 2 for
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Table 6. Effect of porosity coefficient on non-dimensional critical buckling load
of FG beams (k = 2).

l/h Porosity Theory
Porosity coefficient ∗103

0.1 0.15 0.2 0.25 0.3 0.4

5

Imperfect I
2D 15.3742 13.4197 11.3663 9.18052 6.81048 1.10708
3D 16.0732 14.0783 11.9754 9.72548 7.26625 1.20860

Imperfect II
2D 17.8817 17.2655 16.6325 15.9810 15.3092 13.8941
3D 18.6576 18.0480 17.4233 16.7810 16.1196 14.7278

Imperfect III
2D 18.0672 17.5645 17.0612 16.5572 16.0526 15.0407
3D 18.7908 18.2675 17.7433 17.2189 16.6940 15.6421

Imperfect IV
2D 16.6112 15.3500 14.0646 12.7518 11.4079 8.60828
3D 17.3099 16.0158 14.6975 13.3510 11.9720 9.09205

20

Imperfect I
2D 16.6054 14.4320 12.1534 9.73844 7.14343 1.11343
3D 17.1002 14.9279 12.6413 10.2025 7.55479 1.21450

Imperfect II
2D 19.4767 18.8317 18.1680 17.4839 16.7762 15.2797
3D 19.9735 19.3375 18.6827 18.0072 17.3083 15.8275

Imperfect III
2D 19.6585 19.1284 18.5976 18.0668 17.5355 16.4716
3D 20.1037 19.5564 19.0085 18.4604 17.9120 16.8138

Imperfect IV
2D 17.9131 16.4854 15.0385 13.5703 12.0782 9.00925
3D 18.3936 16.9649 15.5149 14.0410 12.5392 9.43379

HSDT theory 2D and quasi-3D. The porosity coefficient is taken as Ω equal
to (0.1 to 0.4). It is clear that the buckling load obtained for imperfect beams
(Ω = 0.1) is bigger than the other values of the porosity coefficient for the four
distributions of porosity calculated. The values of buckling loads Ncr for the C-C
boundary condition are more important than S-S, than C-F boundary condition
because a clamped FG porous beam offers the greatest resistance to bending and
rotation; this translates to a higher critical buckling load compared to supported
or clamped-free ends, which allow for more movement and deflection.

A comparison study of the central deflection (w), the axial stress σxz and
the transverse shear stress τxz are reported in Figs. 2–7 for P-FGM FG porous
beams with various porous models and subjected to both sinusoidal and uniform
distribution loads. Figures 2 and 7 indicate the effect of the side-to-thickness ra-
tio l/h and the porosity models on the central deflections w (Fig. 2), and the
dimensionless stress σxx (Fig. 7) of FG porous FG beams with volume fraction
k = 2 and porosity coefficient Ω is chosen as 0.2. It is noted that for the various
porous models of FG beams, the central deflections (w) decreases with increas-
ing side-to-thickness ratio; this is because of the porosity coefficient’s effect on
the beam’s stiffness; it is the opposite with the dimensionless stress σxx, which
increases with increasing the side-to-thickness ratio, this is because the FG beam
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Table 7. Buckling loads (Ncr) of various imperfect beams with various boundary conditions
(k = 1, l/h = 5).

Boundary
condition

Porosity Theory
Porosity coefficient ∗103

0.1 0.15 0.2 0.25 0.3 0.4

S-S

Imperfect I
2D 21.2244 19.4999 17.7371 15.9280 14.0614 10.0904
3D 21.9593 20.2072 18.4156 16.5758 14.6753 10.6179

Imperfect II
2D 23.5620 23.0408 22.5124 21.9756 21.4301 20.3096
3D 24.3473 23.8261 23.2981 22.7633 22.2208 21.1097

Imperfect III
2D 23.5441 23.0225 22.4993 21.9745 21.4481 20.3896
3D 24.2869 23.7425 23.1968 22.6493 22.1003 20.9963

Imperfect IV
2D 22.2649 21.0900 19.9033 18.7044 17.4916 15.0200
3D 23.0064 21.8092 20.6012 19.3811 18.1475 15.6329

C-C

Imperfect I
2D 69.1620 63.8644 58.4468 52.8780 47.1145 34.7272
3D 77.7151 71.7265 65.6015 59.3071 52.7935 38.8061

Imperfect II
2D 75.8357 73.9787 72.0973 70.1900 68.2547 64.2912
3D 85.6060 83.6884 81.7492 79.7863 77.7985 73.7400

Imperfect III
2D 76.0043 74.2585 72.5092 70.7551 68.9963 65.4617
3D 85.4828 83.5265 81.5653 79.5991 77.6272 73.6649

Imperfect IV
2D 72.8208 69.4080 65.9348 62.3945 58.7795 51.2923
3D 81.5452 77.5597 73.5232 69.4289 65.2715 56.7300

C-F

Imperfect I
2D 5.7891 5.3457 4.8922 4.4261 3.9437 2.9068
3D 5.9862 5.5003 5.0101 4.5129 4.0046 2.9306

Imperfect II
2D 6.2958 6.1565 6.0154 5.8719 5.7262 5.4268
3D 6.5651 6.4124 6.2582 6.1020 5.9438 5.6204

Imperfect III
2D 6.3619 6.2157 6.0693 5.9225 5.7753 5.4794
3D 6.6253 6.4616 6.2984 6.1355 5.9729 5.6485

Imperfect IV
2D 5.9493 5.6354 5.3183 4.9979 4.6739 4.0134
3D 6.1660 5.8180 5.4705 5.1233 4.7757 4.0773

is more susceptible to bending and can experience higher stresses at the same
load due to its lower bending stiffness.

Figure 3 shows the variation of the non-dimensional central deflection w
versus non-dimensional length x/l of perfect and imperfect for various porous
models of FG beams with the volume fraction k = 2 and the porosity coef-
ficient Ω = 0.2. It can be seen that the central deflections w have maximum
values at the central of the beam (x = l/2) significant differences between the
results obtained by the porosity distribution models, where the uneven porosity
distribution model (imperfect I) is higher than that for the other models.

Figure 4 demonstrates the variation of the non-dimensional central deflec-
tion w versus the porosity coefficient Ω of various porous models of FG beams
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Fig. 2. Variation of the non-dimensional central deflection (w) versus the side-to-thickness
ratio l/h of perfect and imperfect beams (k = 2); (a) subjected to sinusoidal distributed

loads, (b) subjected to uniform distributed loads.
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Fig. 3. Variation of the non-dimensional central deflection (w) versus non-dimensional
length x/l of perfect and imperfect beams l/h = 10 (k = 2); (a) subjected to sinusoidal

distributed loads, (b) subjected to uniform distributed loads.

with volume fraction k = 2 and the side-to-thickness ratio l/h = 10. It is ob-
served that for the various porous models of FG beams, the central deflections w
increase with increasing porosity coefficient. This is because the voids in porous
materials have an uneven distribution of density and strength. This inhomogene-
ity can make the material less predictable in its deflection behaviour under load,
with a tendency for larger deflections than a solid, homogeneous material.

Variation of the transverse shear stress τxz and the axial stress σxx through-
the-thickness FG beams for various porous models with volume fraction k = 2
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Fig. 4. Variation of the non-dimensional central deflection (w) versus porosity coefficient Ω
of perfect and imperfect beams l/h = 10 (k = 2); (a) subjected to sinusoidal distributed

loads, (b) subjected to uniform distributed loads.
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Fig. 5. The variation of the transverse shear stress τxz through-the-thickness of perfect and
imperfect beams l/h = 10 (k = 2); (a) subjected to sinusoidal distributed loads, (b) subjected

to uniform distributed loads.

and the side-to-thickness ratio l/h = 10 are shown in Figs. 5 and 6, respectively.
Figure 5 illustrates our proposed theory, which predicts a parabolic distribution
of transverse shear stress throughout the depth of FG porous beams. This the-
ory also fulfils the crucial condition of zero shear stress at the top and bottom
surfaces of the beams. Overall, it is noted that the present results show excellent
agreement with higher-order theories. In addition, the magnitude of the tensile
stresses given in Fig. 6 is greater than the magnitude of the compressive stresses
in FG porous beams. Due to varying properties through the thickness, the axial
stress for the FG porous beam is not zero at the neutral axis.
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Fig. 6. The variation of the axial stress σxx through-the-thickness of perfect and imperfect
beams l/h = 10 (k = 2); (a) subjected to sinusoidal distributed loads, (b) subjected to

uniform distributed loads.
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Fig. 7. The variation of the axial stress σxx versus the side-to-thickness ratio l/h of perfect
and imperfect beams (k = 2); (a) subjected to sinusoidal distributed loads, (b) subjected to

uniform distributed loads.

Variations of the non-dimensional critical buckling load of both boundary
conditions simply supported (S-S) and clamped (C-C) of FG porous beams with
respect to l/h ratios are shown in Fig. 8. It is clearly that the critical buckling
load Ncr is almost constant after l/h = 20 for all porous models. Figure 9 shows
the effect of the porosity coefficient on buckling loads Ncr of FG porous beams
for both boundary conditions. It is noted that for the various porous models
of FG beams, buckling loads, Ncr decreases with increasing porosity coefficient.
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Fig. 8. The variation of buckling loads versus the side-to-thickness ratio l/h of perfect and
imperfect beams (k = 2, Ω = 0.2); (a) S-S boundary condition, (b) C-C boundary condition.

a) b)

N
cr

 

Ω 

l/h = 10, k = 2 

N
cr

 

Ω 

l/h = 10, k = 2 

Fig. 9. Effect of porosity coefficient on buckling loads Ncr of FG porous beams
(k = 2, l/h = 10); (a) S-S boundary condition, (b) C-C boundary condition.

It is noted that the values of clamped (C-C) boundary conditions are greater
than supported (S-S) for Figs. 8 and 9.

5. Conclusions

This article presents a numerical study on the bending and buckling analysis
of functionally graded beams using a simple integral shear deformation theory in
2D and quasi-3D. It introduces the coefficient n to transition from 2D to quasi-3D
theories while maintaining continuity smoothly. This approach allows for ana-
lyzing the equilibrium and stability of FG beams. The proposed beam has four



284 A. Menasria et al.

types of porous distribution and is investigated under static bending and buckling
with varied boundary conditions according to power law P-FGM distributions.
This theory reduces the number of unknowns and governing equations while
integrating the effects of thickness stretching into integral terms. The governing
equations are attained from the static version of the principle of virtual work,
and analytical solutions for various boundary conditions for porous and perfect
beams are reached by deriving governing equations. Multiple validation exam-
ples are presented, and the current quasi-3D theory’s numerical results accurately
predict different FG porous beams’ bending and buckling responses. From the
results obtained and the parametric study, several conclusions can be reached:

• For various porous models of FG beams, the central deflection (w) de-
creases as the side-to-thickness ratio increases, reaching its maximum value
for a perfect beam.

• The dimensionless stress σxx increases with a higher side-to-thickness ratio
because the FG beam becomes more prone to bending, leading to greater
stresses under the same load due to its reduced bending stiffness.

• The central deflections (w) reach their maximum values at the centre of the
beam (x = l/2), with significant differences observed between the results of
the porosity distribution models. The uneven porosity distribution model
(Imperfect I) yields higher deflections compared to the other models.

• For different porous models of FG beams, the central deflection (w) in-
creases as the porosity coefficient rises.

• The tensile stresses shown in Fig. 6 have a greater magnitude than the com-
pressive stresses in FG porous beams.

• The critical buckling load of the porous FGM beam increases with the in-
crease in the side-to-thickness ratio.

• The critical buckling load of the porous FGM beam decreases with increas-
ing porosity.

• The boundary conditions can significantly influence the stability of the
porous FGM beam

This difference is primarily attributed to the presence of porosity, which sig-
nificantly affects the behaviour of FG beams. As a result, porosity must be
considered in the design process to accurately analyse the bending behaviour
of FG beams, particularly for specialised applications in aerospace, automotive,
and civil engineering.
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