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THIS STUDY INTRODUCES A SIMPLIFIED APPROACH TO ASSESS THE BUCKLING AND
STATIC BENDING of advanced composite beams, including those composed of function-
ally graded materials (FGMs) with various porosity models. The technique utilizes
a straightforward integral quasi-3D approach based on the advanced shear defor-
mation theory. This approach offers several advantages: it simplifies the analysis by
reducing the number of unknowns and equations required, improves accuracy by con-
sidering the stretch effect across the entire depth of the beam, resulting in more reli-
able results, and accurately represents shear by satisfying the zero-traction boundary
conditions on the beam’s surfaces without the need for a shear correction factor.
Additionally, it captures the parabolic pattern of transverse shear strain and stress
throughout the depth of the beam. The governing equations are obtained by applying
the concept of virtual work, and the Navier solution is employed to calculate analyti-
cal solutions for the buckling and static bending of FGM porous beams under different
boundary conditions. The approach is in line with and builds upon existing research
on FGMs and other sophisticated composite beams, further enhancing its validity
and reliability. Finally, computational analyses demonstrate how the distribution of
materials, such as power-law functionally graded materials (FGMs), geometry, and
porosity, affect the deflections, stresses, and critical buckling load of the beam.
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1. Introduction

FUNCTIONALLY GRADED MATERIALS (FGMs) have been an engineering topic
for around 30 years since their concept was first proposed in 1987. The scientific
and engineering community working on FGM has become an important and con-
tinually growing part of the materials science and engineering community. FGMs
are found in innumerable structures, systems, tools, and objects today, from mi-
croelectromechanical (MEMS) and other microstructures to space shuttles be-
cause they contribute to making these objects cheaper, safer, more efficient, and
sometimes simply feasible. In recognition of their importance, they have become
regulated by many standards set by engineering and scientific associations |1} 2.

The unique properties of FGMs have attracted significant research inter-
est in their bending behaviour under various loading conditions. This includes
static bending, free vibration analysis, and buckling behaviour of FGM beams,
plates, and shells |3|. Literature suggests that the FGM plate analysis can be
approached through various theoretical frameworks, including the classical plate
theory (CPT) [4, 5]. The first-order shear deformation theory (FSDT) [6, 7], the
higher-order shear deformation theory [8H10|, the quasi-3D theory and the Car-
rera Unified Formulation (CUF) |11} 12]. To determine the spatial variation of
material properties in functionally graded materials and structures, mathemat-
ical laws such as the exponential law [13], sigmoid law [14], and power law |15]
are used.

According to the literature, some work using a higher shear deformation plate
theory (HSDT) with integral terms to determine the behaviour of plates in FGM
has been published. MENASRIA et al. |16] investigate the free vibration behaviour
of functionally graded sandwich plates (FGSPs) with a ceramic foam core sup-
ported by a viscoelastic foundation. The study specifically examines the impact
of temperature variations on the vibration characteristics of these structures. The
analysis incorporates the effects of damping and explores various configurations
of FGSPs. A quasi-3D theory is employed to reduce the number of displacement
variables and simplify the governing equations through the use of integral terms.
Two models are considered to account for the non-uniform properties of the ce-
ramic foam core. HIMEUR et al. |[17] examined the bending behaviour of function-
ally graded (FG) plates under various loading conditions using a novel quasi-3D
theory. The theory incorporates the combined influence of non-uniform Winkler—
Pasternak foundations, where two foundation parameters change simultaneously
across the plate’s surface. This approach builds upon existing quasi-3D theo-
ries by explicitly considering the coupling effect between the variable foundation
and the diverse loading scenarios acting on the FG plates. Many studies have
been conducted recently on FG beams. BELARBI et al. [18] conducted a study
on the flexural analysis of Ti-6A1-4V /ZrO2 functionally graded sandwich plates
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subjected to combined thermal and mechanical loading, utilising an exponential-
cubic-sinusoidal integral shear deformation theory. The proposed formulation
offers a parabolic distribution of transverse shear stresses, eliminating the need
for additional factors in the model. The analysis considers various sandwich
plate configurations with different layer thicknesses and material types, where
the FG layers exhibit a continuous and smooth variation based on exponential
and power-law functions. BERKIA et al. [19] investigated the mechanical buck-
ling behaviour of bi-directional functionally graded sandwich beams (BFGSW)
under various boundary conditions using a quasi-3D beam theory that incor-
porates an integral term within the displacement field. However, the covering
layers of the beams vary smoothly along the beam length and thickness direc-
tions. HOURI et al. |20] investigated the wave dispersion behaviour in porous FG
carbon nanotube-reinforced composite (CNTRC) beams. These beams consist of
four different patterns of single-walled carbon nanotubes (SWCNTs) distributed
within a polymer matrix. The material properties of the CNTRC beams are
estimated using a mixture rule. A novel aspect of this study is the introduc-
tion of three porosity models that describe the porosity distributions within the
matrix. Additionally, a three-unknown integral higher-order shear deformation
theory (HSDT) is employed to analytically model the CNTRC beams, incorpo-
rating a new shape function that characterises the distributions of shear stresses
and strains.

Various publications have explored the effect of porosity on the behaviour of
FGM beams, including GHAZWANI et al. [21] studied the nonlinear forced vibra-
tions of sandwich beams made from porous FGMs with a viscoelastic core layer;
their analysis employs higher-order Zig-Zag theories to account for both normal
and shear deformations. SLIMANI et al. [22| developed a quasi-three-dimensional
(3D) refined theory based on a novel higher-order shear deformation approach
to analyse the static bending behaviour of advanced composite plates, such as
functionally graded plates, with two distinct types of porosity distribution. This
approach reduces the number of unknowns and governing equations by incorpo-
rating the effect of thickness stretching into the transverse displacement, bend-
ing, and shear, using a newly defined shape function. TAMRABET et al. |23|
studied the impact of porosity on the buckling behaviour of a thick functionally
graded sandwich plate subjected to various boundary conditions and in-plane
loads. The formulation is based on a newly developed sandwich plate structure,
utilising a FGM characterised by a modified power law function with both sym-
metric and asymmetric configurations. Four distinct porosity distributions are
examined, and their variations are aligned with the material property gradient
across the thickness of the face sheets. Additionally, the study considers a sec-
ond model of the sandwich plate, which incorporates a metal foam core with
functionally graded material face sheets.
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This study aims to create a novel 2D and quasi-3D HSDT shear deformation
theory incorporating integral terms. This theory is used to analyse the static
bending and buckling characteristics of beams made of FGM with porosities.
Furthermore, the study takes into account the impact of stretching. The novelty
of this research lies in using a quasi-3D HSDT theory that accounts for the ef-
fect of transverse stretching, which is generally not considered in conventional
2D shear deformation theories. This approach reduces the number of variables to
three, unlike other similar theories that often involve four or more variables, thus
simplifying the problem by incorporating a simple integral HSDT. Additionally,
a displacement field with a coefficient n is introduced. This coefficient facilitates
the transition from 2D to quasi-3D theories without any discontinuity and allows
for a more detailed examination of the equilibrium and stability of FG beams.
The suggested beam is equipped with four different types of porous distribu-
tion. It is subjected to static bending and buckling tests, with various boundary
conditions being considered. The beam is believed to possess consistent material
qualities (isotropic) at every specific point. The Young modulus of the beam
varies across its thickness in accordance with a power law that depends on the
volume fractions of the materials present. This theory imposes equilibrium condi-
tions on the upper and lower surfaces of the beam, eliminating the need for shear
correction components. To examine the beam’s behaviour, the governing equa-
tions are obtained by applying the principle of virtual work and subsequently
solved using the Navier method. To ascertain the precision and efficacy of this
novel theory, the computed outcomes are juxtaposed with those derived from
existing well-established theories. In addition, the study presents and discusses
an extensive range of parametric studies to investigate the impact of different
factors on the behaviour of the system.

2. Material properties of imperfect FGM beams

The FG beam’s varied boundary conditions of length (I) and thickness (h)
are exposed, where the material composition varies along the z direction with
the FG index k (Fig. 1). The mechanical properties of the FG beam, such as
Young’s modulus E, Poisson’s ratio v, and shear modulus G, change as the
material composition changes.

In this study, FGM beams with the power-law function (P-FGM), the volume
of ceramic is obtained using the following formula:

(2.1) V(z) = @ + ;)k
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z(w)

q() Full metal

h x(u)

Full ceramic Imperfect FG beam

Fi1c. 1. Geometry and coordinate system of the imperfect FG beam.

In this case, k is the power-law index, and h is the thickness of the beam.
The material properties of a P-FGM can be determined as:

(2.2) P(Z) = P2 + (P1 — PQ)V(Z)

The porosity effect is investigated. Researchers have proposed numerous mod-
els of porosity distribution to compute the effective material properties of porous
FGM beams; four porosity models are used (Fig. 1) by PATIL et al. [24].

Porous material properties for various porosity patterns and the porosity
coefficient (£2) are given by:

Imperfect I:
(2.3a) P(z) = (P.— Pp)Ve+ Py, — %(Pc + Py),

Imperfect II:
Q 2|z|

Imperfect I11:

(23))  P() = (P~ Pa)Vet Pu— 5 (Pt P) (% ; %),
Imperfect 1V:
(2:3d) P(z) = (Pe = Pn)Ve + P — %(Pc + Py) (%)

3. Theoretical formulations of the FG beam
3.1. Kinematics and strains

A new reformulation has been developed to give the displacement field of the
conventional HSDT:
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u(w,2) = wolx) — 252 + f(2)u o),
w(,2) = wola) +ng(2)0(z),

ug, wo, 0, @y are the four unknown displacements of the mid-plane of the beam.
By considering that ¢, = [ 0 (2) dz and taking into account the stretching effect:

(3.1)

8w0
(. 2) = (@) — 250 + kaf(2) [ 0(a) d,
w(z,2) = wo(x) +ng(2)0(z).

The integrals used in the above equations shall be resolved by a Navier-type
method and can be given as follows:

00
* —_— Ali
(3.3) /Hdac 5

(3.2)

where the coefficients A’ is expressed according to the type of solution used, in
this case, via Navier. Therefore, A’ and k, are expressed as follows:

1 mi
(3.4) Al=—-—=, ko =—a® and a=-—,

o) a
f(2) represents the shape function defining the distribution of transverse shear
deformation; it is represented as [25]:

22 z
(3.5) f(z)= (1 — ;th> and g¢g(z) = % dj;i ),

n is a real number and is given as follows:

0 for 2D,
(3.6) n= ,
1 for quasi-3D.

Based on the elasticity theory, the non-zero linear strain components obtained

from Eqgs. and . are:

(3.72) eo =l +2kp + f(2)R7, {1a=} = [ (02} +9() ), €2 = g/ (2)el,

where
0w
dug kb '
{gx} = a} {ki } = Ox? )

(3.7h) { ’ 10
{
0.

68 ={m foarh iy ={5}
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Assuming that the perfect and imperfect FG beam material follows Hook’s
law, the linear elastic constitutive equations at a point are:

Og Ci1 Ciz 0 Ex
(3.8) o, p=1[Ci3Cs 0 €z
Tz 0 0 C’55 Yz

The Cj; (i,j = 1,3,5) expressions in terms of engineering constants depend-
ing on the normal strain ,, are given below

e Case of 2D (e, = 0), then Cj; are:

(3.92) Cy=FE (i=1) Cu= 2(1]3(?( 5 (i=5)
e Case of quasi-3D (e, # 0), then Cj; are:
__E() _
C’ii_ﬁg() (1=1,3),
(3.9b) Cij = 1 E )VQE'Z (4,5 =1,3),
Be)
Ci 2(1+v(2)) (i =5).

3.2. Governing equations

The principle of virtual work is utilised here to determine the governing
equations; the variation of strain energy of the beam is calculated by

(3.10) 6U = / [NL6€Y + N, 6%+ MESED + M6k 4+ Qu.07°, 4 Sp.67L.] dA = 0,
A

where A is the surface and stress resultants N, M, @, and S are the force and
moment components represented in the following forms:

N, h/2 1 h/2
Mb S = /(O‘x) z pdz, N,= / 0.9 (2)dz,
Mz) i f(z) ~h/2
(3.11) hy2
Spz | _ g(z)
o= [ e {F) e
—h/2

The variation of potential energy of the applied mechanical loads can be
expressed as
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(3.12) SV = - / 48 (wo(2) + g(2)0(x)) dA

/N (wo +9 2)0(x)) do(wo + 9(2)0(x)) ,
dx

Substituting the expressions from Egs. (3.10) and (3.12) of 6U and §V, the
variation of the potential energy of the beam can be expressed as:

(3.13)  6U — 6V

/[N 069 + N.0c9 + MESKS + MEoks + Q5.9 + S0.vs.] dA
A

—/q6w0 dA—/qg(z)é@dA

/Nbim+g 20(x)) dolwo +9(2)0) |,

dz

Integrating by parts and collecting the coeflicients of dug, dvg, dwg, and 66,
from Egs. (3.7) into Egs. (3.9), the following governing equations of the beam
are obtained:

ON,
dug : =0
Uuo o )
2M1'b 82
(3.14)  Swy : 972 +q+ NOW =0,
0Q 0%w
801 =N, — ki MJ + ki A —= Nog(2)*—— = 0.
1My + k1 O 8 ()+ Og(Z) o2 0
Using Egs. (3.7), (3.8) and (3.9b), the stress resultants are obtained as:
N A B B*| (€ L
(3.15a) { MYy = |B D D*|{kb}+ |0 &f,
M? B> D H°| | k2 R

(3.15b) {g} = [; j] {3?} N, = R + L(¢9) + L*(K}) + R(K3),

where
(3.15¢) {A B D B* D* H*%)
h/2 1-v
= [ @0 = 2 5@, 206, FE1 T G
1—2v

—h/2 2v
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L h/2 1
Le z ,
(3150) S={Se}, Q@={Qu}, {5t = / ORI YOS
R —h/2 g/(z)lzv
F°=Fy, A°=A},, X°=Xj,
h/2
E
@15 (FpXiw Al = [ (G0, e ) d
—h/2

Substituting Egs. (3.7), (3.15), (3.16) into Egs. (3.14), the equilibrium equa-
tions are defined by:

aQUQ 83w0 s 8(9
dug Aax2 - B 923 + (B k1+L)%_0,
g 9w s %0 9w
dwyg : W_DW+( 11k1+L)82+q+ 8220,
Oug 0?
(316)  50: —(L + kyBsy) 22 o+ (L kD) 81”2 — (K2HS, + 2k R + R0
2 A2 s !y s 829 S !y S 82
+ (klA F44 + klA X44)w + (A44 + klA X44)w
0%w
+qg(2) + Nog(2)’ == = 0.

0x?

The critical buckling load is determined using the stability equations, which
are formulated based on the principle of virtual forces and the criteria of adjacent
equilibrium state.

3.3. Exact solution for various boundary conditions of FG beam

The admissible functions in Table 1 can be used to construct the exact solu-
tion of Eqs. (3.17) for FGM beams under different boundary conditions [23],

uo(x,y) Un MQL:E("E)Y”(:U)
(3.17) wo(r,y) 0 = 4 Wy Xon(2)Yn () ¢
0(x,y) O X (2) Y (2)

where U,,, W,,, and 0,, are the unknown displacement coefficients.

TABLE 1. Admissible functions X, Y.

Admissible functions X,, and Y,
Xm Yo
Simply-Supported (S-S) sin(aur) sin(Ax)
Clamped-Clamped (C-C) sin(az) cos(ax) sin(Az) sin(Az)
Clamped-Free (C-F) cos? (o) (sin?(ax) + 1) sin?(\x)

Boundary conditions




272 A. MENASRIA et al.

By replacing the extensions of U,,, W, and 6,, of Egs. (3.16) in the equations
of equilibrium (3.15), the analytical solutions can be obtained from

ain a2 ai3 Unn 0
(3.18) ai2 a2 + Ner a2z | § Wi 0 =<0 0,
a3 a3 as3 Ormn 0
in which:
ajl = A11L12, a1 = _BL137
a1 = —BL12, a9 = DL137
(3.19) a1z = B°k1L12 — LL2, az1 = B°k1L13 — LL3,

azg = —D°k1L13 + LoL13,  aza = —D°k1L1g + LoLas,
aszz = Hislki%Lg —2kiRL13+ R+ A2F4f4k‘%L13 - 2AX2§4]€L13 + Ai4L13,

with
(3.20) Nq = NoLg

and

(X Y X Yo, dx dy,

(X! Yo, X" Y X)X Yo daz dy.

(0597051130413) = mtm>

b

/

b

(3.21) (a6, 12) = 0/
b

[

l
0
l
/ (X Y, X"Y) X! Y dudy, b=1,
0
/l
0

The transverse load ¢(z) is also expanded in the Fourier series as

oo
(3.22) q= Z Gm Sin m;rx

m=1
The Fourier coefficient (g,,) for sinusoidal and uniform loads are as follows:
qo  sinusoidal load (m = 1),

490
mT

(3.23) q=

uniform load (m =1,3,5,...,00).
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For the bending problem, put Ny = 0, and for the buckling problem, put
q=0.

e Bending analysis
(3.24) [K{A} ={/}.
e Buckling analysis
(3.25) {[K] = No[N|}{A} = {0},

where [K] is the stiffness matrix, [N]| is the geometric matrix due to the axial
forces, {f} is the force vector, {A} is the vector of unknowns, and Ny is the
axial force.

4. Numerical results and discussion
4.1. Convergence and validation study

In this paper, many numerical examples are provided and discussed to verify
the accuracy of the quasi-3D shear deformation theory used to analyse the static
bending and buckling of the FGM beam for various boundary conditions.

The properties of the materials used are:

e Ceramic (P,: Alumina, Al,O3): E. = 380 GPa; v. = 0.3.
e Metal (P,,: Aluminum, Al): E,, = 70 GPa; v,,, = 0.3.

The material properties of the FG beam vary continuously in the thickness
direction according to the power law (P-FGM).

For simplicity, displacements, stresses and critical buckling loads are pre-
sented in the non-dimensional form:

~ 100Emh3< l )
W= —"—wle==,2=0],

qol* 2’
_ 100E,,h? h
U= — U sz,z:—§ ,
(4.1) e
g (z)—ia x—iz—é ?(z)—ET r=0z=
T - qu T - 2? - 2 Y xz - qol xTrz - 9 - Y
1212
New = Nog—

Table 2 presents the maximum nondimensionalised displacements and stresses
of the beam for various power law index values and a length-to-thickness (I/h)
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TABLE 2. Non-dimensional displacements and stresses of functionally graded beams (I = 5h).

Sinusoidal load

Uniform load

k Theory Model|—— — — — — — — —

u w Oz Tzx u w (o Tzx

Present 2D HSDT|0.7251|2.5019|3.0916|0.4768|0.9398|3.1653|3.8020|0.7333

Present 3D HSDT|0.7033|2.2829|2.7730/0.4291|0.9080(2.8951|3.4120(0.6599

0 SAYYAD |26] RSDT|0.7266|2.5004|3.0979/0.5072(0.9420|3.1635|3.8084(0.7764

ceramic REDDY [27] HSDT|0.7251|2.5020|3.0916|0.4769(0.9397|3.1654|3.8028|0.7305

TiMosHENKO [28] |FSDT|0.7129|2.5023|3.0396|0.3183|0.9210|3.1057|3.7501|0.4922
BErNOULLI-EULER [29|| CBT |0.7129|2.2693|3.0396| — |0.9210|2.8783|3.7501| -

Present 2D HSDT|1.7795[4.9457|4.7856|0.5241|2.3037|6.2594|5.8832|0.8011

Present 3D HSDT|1.6925(4.5110(4.2472|0.5122(2.1856|5.7207(5.2250|0.7579

1 SAYYAD |26] RSDT|1.7819|4.9432|4.7964| 0.543 |2.3074|6.2563|5.8957|0.8288

REDDY |27] HSDT|1.7793|4.9458|4.7856|0.5243|2.3037|6.2594(5.8850|0.8031

TIMOSHENKO 28] |FSDT|1.7588|4.6979(4.6979|0.5376|2.2722|6.1790|5.7960(0.8313
BErNOULLI-EULER [29|| CBT |1.7588|4.69794.6979| — |2.2722|5.7746/5.7960| —

Present 2D HSDT|2.4048|6.3754/5.6002|0.4368|3.1130|8.0677|6.8820|0.8201

Present 3D HSDT|2.2725|5.7379|4.9624(0.4269|2.9344|7.2765|6.1056|0.7760

9 SAYYAD |26] RSDT|1.7819|4.9432|4.7964| 0.543 |3.1174|8.0666|6.8971|0.8485

REDDY [27] HSDT|2.4048|6.3754|5.6004|0.5521|3.1128(8.0677|6.8842|0.8446

TiMOSHENKO |28] |FSDT|2.3794(6.2601(5.4356|0.6978|3.0739(7.9253/6.7678(1.0791
BERNOULLI-EULER [29]|| CBT |2.3794|5.8346|5.4856| — [3.0739|7.4003|6.7678| —

Present 2D HSDT|2.8643|7.7722|6.6054|0.3856(3.7101(9.8280(8.1100|0.7398

Present 3D HSDT|2.7024(6.8041|5.7982|0.3768|3.4893(8.6286|7.1326|0.7000

5 SAYYAD [26] RSDT|2.4078|6.3745(5.6149|0.5553|3.7179|9.8414(8.1331|0.7654

REDDY |27] HSDT|2.8644(7.7723|6.6057|0.5314(3.7098|9.8281|8.1127|0.8114

TiMoOsHENKO [28] |FSDT|2.8250(7.5056(6.4382|0.9942|3.6496|9.4987|7.9430(1.5373
BerNoOULLI-EULER [29]|| CBT |2.8250(6.8994(6.4382| — |3.6496|8.7508|7.9430| —

Present 2D HSDT|2.9990|8.6530|7.9078|0.4223|3.8861|10.938|9.7128|0.6715

Present 3D HSDT|2.8432|7.5315|6.9432|0.4127|3.6709(9.5508|8.5406|0.6353

10 SAYYAD [26] RSDT!|3.0054(8.6547| 7.93 | 0.456 |3.9858| 10.94 (9.7345|0.6947

REDDY [27] HSDT|2.9989|8.6530|7.9080(0.4224|3.8861(10.938|9.7141|0.6448

TIMOSHENKO [28] |FSDT|2.9488(8.3259(7.7189| 1.232 |3.8096|10.534(9.5231{1.9050
BERNOULLI-EULER [29]|| CBT |2.9488|7.5746|7.7189| — (3.8096(9.6072(9.5231| —

Present 2D HSDT|3.9363|13.582|3.0916/0.4768|5.1018(17.183|3.8020(0.7482

Present 3D HSDT|3.8178|12.393|2.7730|0.4660(4,9290(15.716|3.4120|0.7079

o0 SAYYAD |26] RSDT|3.9444(13.574| 3.098 [0.5072(5.1133|17.173|3.8084|0.7741

metal REDDY [27] HSDT|3.9363|13.582|3.0916|0.4769(5.1021(17.183|3.8028|0.7305

TimosHENKO [28] |FSDT|3.8702(12.552(3.0396|0.3183|5.0000/15.912|3.7501|0.4922
BeErNoOULLI-EULER [29]|| CBT |3.8702(12.319(3.0396| — [5.0000|15.625|3.7501| —
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ratio of 5. To facilitate comparison, we specifically generated numerical re-
sults for a supported FG beam using different theories: RSDT proposed by
SAYYAD [26], HSDT by REDDY |27|, FSDT by TIMOSHENKO [28], and CBT [29].
It is observed from Table 2 that the transverse displacement reaches its maxi-
mum value when k& = oo, while it is minimised when k& = 0. This behaviour is
attributed to the increased flexibility of FG beams with higher power-law indices.

The second validation exercise scrutinised the validity of the current theo-
retical model by evaluating the buckling behaviour of a supported, functionally
graded higher-order beam under the axial force (Np). The study presents numeri-
cal data for the non-dimensional critical buckling load (V) in Table 3, reflecting
various power law indices and [/h ratios of 5 and 10. The findings demonstrate
a high degree of concordance with the results reported by SAYYAD et al. 26|,
L1 and BATRA [30], NGUYEN et al. [31], and VO et al. [32]. An analysis of Table 3
reveals that an increase in the power law index (k) corresponds to a reduction
in the critical buckling load. Additionally, it is noted that the non-dimensional
critical buckling load is greater for slender, thin beams and lesser for thicker
beams. In contrast, the dimensional critical buckling load exhibits the opposite
trend, being higher for thicker beams and lower for thinner beams.

TABLE 3. Non-dimensional critical buckling load (N.,) of simply supported functionally
graded beams.

Power law index (p)

l/h Theory
0 (ceramic) 1 2 5 10 | oo (metal)

Present 2D 48.5957 |24.5837|19.0709 | 15.6436 | 14.0512 | 8.95187
Present 3D 49.6392 | 25.3720(19.8365 | 16.4111 | 14.6969 | 9.14404
SAYYAD |26] 48.6260 |24.5966 | 19.0738 | 15.6220 | 14.0485 | 8.95730

5 L1 and BATRA [30] | 48.8350 |24.6870|19.2450 | 16.0240 | 14.4270 -

NGUYEN et al. |31]| 48.8350 |24.6870|19.2450 | 16.0240 | 14.4270 -

Vo et al. [32] 48.8372 |24.6898|19.2479 | 16.0263 | 14.4286 -

Vo et al. [32] 48.8401 | 24.6911 | 19.1605 | 15.7400 | 14.1468 -
Present 2D 52.2377 ]26.1408 | 20.3663 | 17.0818 | 15.4993 | 9.62275
Present 3D 52.5388 [26.6412|20.9111|17.5600 | 15.8360 | 9.67820
SAYYAD |26] 52.2463 |26.1443|20.3669 | 17.0750 | 15.4982 | 9.62420

10 "Ll and Barra [30]| 52.3090 | 26.1710]20.4160 | 17.1920 | 15.6120 -

NGUYEN et al. [31]| 52.3090 |26.1710|20.4160 | 17.1940 | 15.6120 -
Vo et al. |32] 52.3085 |26.1728|20.4187|17.1959 | 15.6134 -
Vo et al. |32] 52.3082 [26.1727|20.3936 | 17.1118 | 15.5291 -

Table 4 serves as a validation of the current theory’s efficacy in the buck-
ling analysis of P-FGM beams under various boundary conditions, including
Simply-Supported (S-S), Clamped-Clamped (C-C), and Clamped-Free (C-F).
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The non-dimensional critical buckling load (N,,) for P-FGM beams across these
conditions has been compared. The normalised buckling loads calculated using
this theory have been evaluated against the results published by KAHYA and TU-
RAN [33]|, NGUYEN et al. |31]. The analysis of Table 4 indicates that the findings
from this theory align closely with those from other theories. It is observed that
the clamped (C-C) beams demonstrate the highest buckling loads, in contrast
to the cantilever (C-F) beams, which show the lowest. Additionally, an increase
in the power law index is associated with a decrease in normalised buckling
loads, confirming the current theory’s capability to accurately determine the
critical buckling loads of P-FGM beams under varying boundary conditions.

TABLE 4. Comparison of the normalised buckling loads of functionally graded beams
with different boundary conditions (I/h = 5).

Boundary Theor k
conditions Y 1 2 5 10 00
Present 2D 48.5957 | 24.5837 | 19.0709 | 15.6436 | 14.0512 | 8.95187
Present 3D 49.6392 | 25.372 |19.8365|16.4111 | 14.6969 | 9.14408
S-S SAYYAD [26] 48.626 |24.5966 | 19.0738 | 16.622 |14.0485 | 8.95730

KaHYA and TURAN [33] | 48.5907 | 24.5815 | 19.1617 | 15.9417 | 14.3445 | 8.95100
NGUYEN et al. |31] 48.8406 | 24.6894 | 19.1577 | 15.7355 | 14.1448 -

Present 2D 152.148 | 79.4832 | 60.8785 | 46.8871 | 40.9883 | 28.0272
Present 3D 171.629 | 89.382 [ 69.6172 | 55.9988 | 49.4489 | 31.6159
c-C Savyvap [26] 154.484 | 79.739 | 61.9488 [ 49.5646 | 42.7493 | 27.9160

KanyA and TURAN [33] | 151.943 | 79.3903 | 61.7449 | 49.5828 | 43.5014 | 27.9890
NGUYEN et al. [31] 154.561 | 80.5940 | 61.7666 | 47.7174 | 41.7885 -

Present 2D 13.0542 | 6.5362 | 5.0958 | 4.2906 | 3.8527 | 2.3807
Present 3D 14.2703 | 6.8319 | 5.2547 | 4.4028 | 3.9351 | 2.3945
C-F Savvap [26] 13.0719| 6.557 | 5.0986 | 4.2931 | 3.8512 | 2.3819

KaHYA and TURAN [33] | 13.0594 | 6.5352 | 5.0981 | 4.2926 | 3.897 | 2.4057
NGUYEN et al. |31] 13.0771| 6.5427 | 5.0977 | 4.2772 | 3.882 -

4.2. Parametric study and discussions — porosity effect

Table 5 is related to the effect of porosity, various porosity patterns and both
the HSDT theory 2D and quasi-3D on the displacement, axial and tangential
stresses of the FGM beam under uniform and sinusoidal loads of the supported
FGM porous beam. It is clear that the augmentation of the imperfection param-
eter () leads to a reduction in rigidity of the FGM beam, therefore increasing the
dimensionless displacement and axial and tangential stresses of the FGM beam
for both the HSDT theory 2D and quasi-3D.
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TABLE 5. Effect of porosity coefficient on displacement, axial and tangential stresses
of the FGM beam under uniform and sinusoidal loads (k = 2, I/h = 5).

QO Porosity | Theory Sinusoidal load Uniform load

u w Oz Tea u w Oz Tea

2D |4.0117]10.0092|7.5654|0.65966|3.1000|7.90842|6.1578|0.42978
3D |3.7664|9.01997|6.7400]0.59434|2.9168|7.11256 |5.4770|0.45683
Imperfect 11 2D |3.3627|8.60362|7.1118]0.62666|2.5978|6.79941|5.7872|0.40840
0.1 3D |3.1638|7.72134|6.3028]0.57909|2.4501|6.08864 | 5.1234 |0.42814
2D |3.2747]8.51557|6.849410.66616|2.5298|6.72963|5.5728|0.43398
3D |3.0878]7.67235|6.0708]0.61833|2.3912|6.05000{4.9350|0.45383
2D |3.6552|9.26416|7.2652|0.70298|2.8242|7.31949|5.9102|0.45776
3D |3.4390|8.38694|6.4682|0.64585|2.6630|6.61344 |5.2574|0.48142
2D |5.7165]13.5423|8.801810.64338|4.4190{10.6970|7.1596 | 0.41928
3D |5.3374|12.2015|7.9040]0.52656|4.1333|9.62117|6.4234|0.46753
Imperfect 11 2D |3.6675|9.24922|7.3616|0.57274|2.8338|7.31014|5.9938 |0.37352
0.2 3D |3.4438|8.25355(6.5216|0.52000|2.6669|6.50830 |5.3008 | 0.39541
2D |3.4542]9.01722|6.8112| 0.661 |2.6685|7.12642|5.5434|0.43068
3D |3.2579]8.11411{6.0346|0.60717|2.5232|6.39835(4.9044|0.45303
2D |4.4286|10.9440(7.8216| 0.7388 |3.4227|8.64475|6.3612|0.48090
3D |4.1562|9.94443|7.0002|0.65798|3.2186|7.84152|5.6896 |0.51429
2D 10.293]22.6130{11.947|0.61458|7.9611|17.8528|9.7118|0.40056
3D |9.5378|20.4186|10.963]0.30961|7.3837|16.1000|8.9024 |0.52590
Imperfect 11 2D |4.0504|10.0478|7.6456|0.50518|3.1298|7.94198|6.2262|0.32970
0.3 3D |3.7947|8.90770(6.7690]0.44731|2.9389|7.02406 | 5.5018 | 0.35374
2D |3.6547]9.58325|6.771810.65494|2.8232|7.57418|5.5106 | 0.42680
3D |3.4480]8.61043|5.992810.59388|2.6706 |6.78976|4.8722|0.45216
2D |5.6230|13.4964|8.6956| 0.779 |4.3469|10.6580|7.0694|0.50682
3D |5.2595|12.3059|7.8458]0.65383|4.0725|9.70347|6.3744|0.55838

Imperfect I

Imperfect 11T

Imperfect IV

Imperfect I

Imperfect 111

Imperfect IV

Imperfect I

Imperfect 111

Imperfect IV

The influence of porosities distribution on critical buckling load N of FG
beams for volume fraction index = 2 for the HSDT theory 2D and quasi-3D is
depicted in Table 6. The porosity coefficient is chosen as € egal (0.1 to 0.4).
It is clear that the buckling load obtained for imperfect beams (2 = 0.1) is
bigger than the other values of the porosity coefficient for the four distributions
of porosity calculated. The critical buckling loads decreased as the porosity pa-
rameters increased for functionally graded porous beams for both used HSDT
theories. This is because the mechanical properties, such as Young’s modulus,
are affected by the porosity, leading to a decrease in the beam’s ability to resist
buckling loads.

Table 7 shows buckling loads N, of various imperfections of FG porous
beams with various boundary conditions for volume fraction index k£ = 2 for
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TABLE 6. Effect of porosity coefficient on non-dimensional critical buckling load
of FG beams (k = 2).

Porosity coefficient %103

0.1 0.15 0.2 0.25 0.3 0.4

2D | 15.3742]13.4197|11.3663 | 9.18052 | 6.81048 | 1.10708
3D ]16.0732|14.0783 | 11.9754 | 9.72548 | 7.26625 | 1.20860
Imperfect I 2D | 17.8817|17.2655 | 16.6325 | 15.9810 | 15.3092 | 13.8941
5 3D |18.6576|18.0480 | 17.4233 | 16.7810 | 16.1196 | 14.7278
2D | 18.0672|17.5645 | 17.0612 | 16.5572 | 16.0526 | 15.0407
3D | 18.7908 | 18.2675 | 17.7433 | 17.2189 | 16.6940 | 15.6421
2D |16.6112]15.3500 | 14.0646 | 12.7518 | 11.4079 | 8.60828
3D |17.3099 |16.0158 | 14.6975 | 13.3510 | 11.9720 | 9.09205
2D | 16.6054 | 14.4320|12.1534 | 9.73844 | 7.14343 | 1.11343
3D |17.1002|14.9279 | 12.6413 | 10.2025 | 7.55479 | 1.21450
Imperfect I 2D |19.4767|18.8317 | 18.1680 | 17.4839 | 16.7762 | 15.2797
20 3D |19.9735|19.3375 | 18.6827 | 18.0072 | 17.3083 | 15.8275
2D |19.6585|19.1284 | 18.5976 | 18.0668 | 17.5355 | 16.4716
3D ]20.1037 | 19.5564 | 19.0085 | 18.4604 | 17.9120 | 16.8138
2D |17.9131|16.4854 | 15.0385 | 13.5703 | 12.0782 | 9.00925
3D ]18.3936 | 16.9649 | 15.5149 | 14.0410 | 12.5392 | 9.43379

l/h| Porosity |Theory

Imperfect I

Imperfect III

Imperfect IV

Imperfect I

Imperfect 111

Imperfect IV

HSDT theory 2D and quasi-3D. The porosity coefficient is taken as € equal
to (0.1 to 0.4). It is clear that the buckling load obtained for imperfect beams
(€ = 0.1) is bigger than the other values of the porosity coefficient for the four
distributions of porosity calculated. The values of buckling loads N, for the C-C
boundary condition are more important than S-S, than C-F boundary condition
because a clamped FG porous beam offers the greatest resistance to bending and
rotation; this translates to a higher critical buckling load compared to supported
or clamped-free ends, which allow for more movement and deflection.

A comparison study of the central deflection (w), the axial stress o, and
the transverse shear stress 7., are reported in Figs. 2-7 for P-FGM FG porous
beams with various porous models and subjected to both sinusoidal and uniform
distribution loads. Figures 2 and 7 indicate the effect of the side-to-thickness ra-
tio I/h and the porosity models on the central deflections w (Fig. 2), and the
dimensionless stress o, (Fig. 7) of FG porous FG beams with volume fraction
k = 2 and porosity coefficient €2 is chosen as 0.2. It is noted that for the various
porous models of FG beams, the central deflections (w) decreases with increas-
ing side-to-thickness ratio; this is because of the porosity coefficient’s effect on
the beam’s stiffness; it is the opposite with the dimensionless stress o,,, which
increases with increasing the side-to-thickness ratio, this is because the FG beam
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TABLE 7. Buckling loads (Ner) of various imperfect beams with various boundary conditions

(k=1,1/h=5).

Boun'd?.ry Porosity | Theory Porosity coefficient %103

condition 0.1 0.15 0.2 0.25 0.3 0.4
2D | 21.2244]19.4999 | 17.7371 | 15.9280 | 14.0614 | 10.0904
3D |21.9593]20.2072 | 18.4156 | 16.5758 | 14.6753 | 10.6179
Imperfect IT 2D | 23.5620 | 23.0408 | 22.5124 | 21.9756 | 21.4301 | 20.3096
S-S 3D |24.3473]23.8261 | 23.2981 | 22.7633 | 22.2208 | 21.1097
2D | 23.5441 | 23.0225 | 22.4993 | 21.9745 | 21.4481 | 20.3896
3D | 24.2869 | 23.7425| 23.1968 | 22.6493 | 22.1003 | 20.9963
2D | 22.2649|21.0900 | 19.9033 | 18.7044 | 17.4916 | 15.0200
3D |23.0064 | 21.8092 | 20.6012 | 19.3811 | 18.1475 | 15.6329
2D 69.1620 | 63.8644 | 58.4468 | 52.8780 | 47.1145 | 34.7272
3D | 77.7151 | 71.7265 | 65.6015 | 59.3071 | 52.7935 | 38.8061
Imperfect 1T 2D | 75.8357 | 73.9787|72.0973 | 70.1900 | 68.2547 | 64.2912
C-C 3D | 85.6060 | 83.6884 | 81.7492 | 79.7863 | 77.7985 | 73.7400
2D | 76.0043 | 74.2585 | 72.5092 | 70.7551 | 68.9963 | 65.4617
3D | 85.4828|83.5265 | 81.5653 | 79.5991 | 77.6272 | 73.6649
2D | 72.8208|69.4080 | 65.9348 | 62.3945 | 58.7795 | 51.2923
3D | 81.5452 | 77.5597 | 73.5232 | 69.4289 | 65.2715 | 56.7300
2D 5.7891 | 5.3457 | 4.8922 | 4.4261 | 3.9437 | 2.9068
3D 5.9862 | 5.5003 | 5.0101 | 4.5129 | 4.0046 | 2.9306
Imperfect 11 2D 6.2958 | 6.1565 | 6.0154 | 5.8719 | 5.7262 | 5.4268
C-F 3D 6.5651 | 6.4124 | 6.2582 | 6.1020 | 5.9438 | 5.6204
2D 6.3619 | 6.2157 | 6.0693 | 5.9225 | 5.7753 | 5.4794
3D 6.6253 | 6.4616 | 6.2984 | 6.1355 | 5.9729 | 5.6485
2D 5.9493 | 5.6354 | 5.3183 | 4.9979 | 4.6739 | 4.0134
3D 6.1660 | 5.8180 | 5.4705 | 5.1233 | 4.7757 | 4.0773

Imperfect I

Imperfect ITI

Imperfect IV

Imperfect I

Imperfect 111

Imperfect IV

Imperfect I

Imperfect 111

Imperfect IV

is more susceptible to bending and can experience higher stresses at the same
load due to its lower bending stiffness.

Figure 3 shows the variation of the non-dimensional central deflection w
versus non-dimensional length /I of perfect and imperfect for various porous
models of FG beams with the volume fraction & = 2 and the porosity coef-
ficient 2 = 0.2. It can be seen that the central deflections w have maximum
values at the central of the beam (x = [/2) significant differences between the
results obtained by the porosity distribution models, where the uneven porosity
distribution model (imperfect I) is higher than that for the other models.

Figure 4 demonstrates the variation of the non-dimensional central deflec-
tion w versus the porosity coefficient € of various porous models of FG beams
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F1a. 2. Variation of the non-dimensional central deflection (w) versus the side-to-thickness
ratio I/h of perfect and imperfect beams (k = 2); (a) subjected to sinusoidal distributed
loads, (b) subjected to uniform distributed loads.
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Fia. 3. Variation of the non-dimensional central deflection (w) versus non-dimensional
length x /I of perfect and imperfect beams I/h = 10 (k = 2); (a) subjected to sinusoidal
distributed loads, (b) subjected to uniform distributed loads.

with volume fraction & = 2 and the side-to-thickness ratio [/h = 10. It is ob-
served that for the various porous models of FG beams, the central deflections w
increase with increasing porosity coefficient. This is because the voids in porous
materials have an uneven distribution of density and strength. This inhomogene-
ity can make the material less predictable in its deflection behaviour under load,
with a tendency for larger deflections than a solid, homogeneous material.
Variation of the transverse shear stress 7., and the axial stress o, through-
the-thickness FG beams for various porous models with volume fraction k& = 2



A SIMPLE QUASI-3D THEORY FOR STATIC STABILITY ANALYSIS. .. 281

a) b)
300 T T T T T T T T 40.0 T T T T T T T
s IIh=10,k=2 ] 37.54 I/h=10,k=2 ]
) 350 ]
250 Perfect 7 325 4 Perfect 1
25 4 = Imperfect | i 20.0 4 ———— Imperfect [ ]
e Imiperfect 11 - = [mperfect II
20.0 _ 27.54 4
= Imperfect 1[I _ ———— Imperfect IIl
= > 250 4 N fect IV g
175 Imperfect IV _ mperfect
2254 4
150 4 1 20.0 g
125 4 17.54 4
15.0 4 e
10.0 4 4
1254 _
7.5 4 b 10.0 T
50 T T T T T T T T 7.54 T T T T T T T T =
000 005 010 015 020 025 030 035 000 005 010 015 020 025 030 035 040
Q Q

FiG. 4. Variation of the non-dimensional central deflection (w) versus porosity coefficient
of perfect and imperfect beams [/h = 10 (k = 2); (a) subjected to sinusoidal distributed
loads, (b) subjected to uniform distributed loads.
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F1G. 5. The variation of the transverse shear stress 7., through-the-thickness of perfect and
imperfect beams I/h = 10 (k = 2); (a) subjected to sinusoidal distributed loads, (b) subjected
to uniform distributed loads.

and the side-to-thickness ratio [/h = 10 are shown in Figs. 5 and 6, respectively.
Figure 5 illustrates our proposed theory, which predicts a parabolic distribution
of transverse shear stress throughout the depth of FG porous beams. This the-
ory also fulfils the crucial condition of zero shear stress at the top and bottom
surfaces of the beams. Overall, it is noted that the present results show excellent
agreement with higher-order theories. In addition, the magnitude of the tensile
stresses given in Fig. 6 is greater than the magnitude of the compressive stresses
in FG porous beams. Due to varying properties through the thickness, the axial
stress for the FG porous beam is not zero at the neutral axis.
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F1c. 6. The variation of the axial stress o4, through-the-thickness of perfect and imperfect
beams [/h = 10 (k = 2); (a) subjected to sinusoidal distributed loads, (b) subjected to

uniform distributed loads.
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Fia. 7. The variation of the axial stress o, versus the side-to-thickness ratio [/h of perfect
and imperfect beams (k = 2); (a) subjected to sinusoidal distributed loads, (b) subjected to

uniform distributed loads.

Variations of the non-dimensional critical buckling load of both boundary
conditions simply supported (S-S) and clamped (C-C) of FG porous beams with
respect to [/h ratios are shown in Fig. 8. It is clearly that the critical buckling
load N, is almost constant after [/h = 20 for all porous models. Figure 9 shows
the effect of the porosity coefficient on buckling loads N, of FG porous beams
for both boundary conditions. It is noted that for the various porous models
of FG beams, buckling loads, N, decreases with increasing porosity coefficient.
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F1G. 8. The variation of buckling loads versus the side-to-thickness ratio [/h of perfect and
imperfect beams (k = 2, = 0.2); (a) S-S boundary condition, (b) C-C boundary condition.
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Fiac. 9. Effect of porosity coefficient on buckling loads N., of FG porous beams
(k=2,1/h =10); (a) S-S boundary condition, (b) C-C boundary condition.

It is noted that the values of clamped (C-C) boundary conditions are greater
than supported (S-S) for Figs. 8 and 9.

5. Conclusions

This article presents a numerical study on the bending and buckling analysis
of functionally graded beams using a simple integral shear deformation theory in
2D and quasi-3D. It introduces the coefficient n to transition from 2D to quasi-3D
theories while maintaining continuity smoothly. This approach allows for ana-
lyzing the equilibrium and stability of FG beams. The proposed beam has four
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types of porous distribution and is investigated under static bending and buckling
with varied boundary conditions according to power law P-FGM distributions.
This theory reduces the number of unknowns and governing equations while
integrating the effects of thickness stretching into integral terms. The governing
equations are attained from the static version of the principle of virtual work,
and analytical solutions for various boundary conditions for porous and perfect
beams are reached by deriving governing equations. Multiple validation exam-
ples are presented, and the current quasi-3D theory’s numerical results accurately
predict different FG porous beams’ bending and buckling responses. From the
results obtained and the parametric study, several conclusions can be reached:

e For various porous models of FG beams, the central deflection (w) de-
creases as the side-to-thickness ratio increases, reaching its maximum value
for a perfect beam.

e The dimensionless stress o,, increases with a higher side-to-thickness ratio
because the FG beam becomes more prone to bending, leading to greater
stresses under the same load due to its reduced bending stiffness.

e The central deflections (w) reach their maximum values at the centre of the
beam (x = [/2), with significant differences observed between the results of
the porosity distribution models. The uneven porosity distribution model
(Imperfect I) yields higher deflections compared to the other models.

e For different porous models of FG beams, the central deflection (w) in-
creases as the porosity coefficient rises.

e The tensile stresses shown in Fig. 6 have a greater magnitude than the com-
pressive stresses in FG porous beams.

e The critical buckling load of the porous FGM beam increases with the in-
crease in the side-to-thickness ratio.

e The critical buckling load of the porous FGM beam decreases with increas-
ing porosity.

e The boundary conditions can significantly influence the stability of the
porous FGM beam

This difference is primarily attributed to the presence of porosity, which sig-
nificantly affects the behaviour of FG beams. As a result, porosity must be
considered in the design process to accurately analyse the bending behaviour
of FG beams, particularly for specialised applications in aerospace, automotive,
and civil engineering.
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