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Two rigid non-circular inhomogeneities in an elastic matrix
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We derive analytical solutions to the plane elasticity problem of two
interacting identical rigid non-circular inhomogeneities embedded in an infinite
isotropic elastic matrix subjected to uniform remote in-plane normal and shear
stresses. Explicit expressions for the pair of analytic functions due to remote nor-
mal and shear stresses are obtained with the aid of analytic continuation and a con-
formal mapping function for the doubly connected quadrature domain occupied by
the matrix. The rigid body rotation of each rigid inhomogeneity induced by a uni-
form remote shear stress is determined once three corresponding regular integrals
are evaluated. The remote asymptotic behaviors of the pair of analytic functions are
determined once five associated regular integrals are evaluated.
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1. Introduction

Stress analysis in plane elasticity can be accomplished with the aid of
the techniques of conformal mapping [1] and analytic continuation [2]. The anal-
ysis becomes formidably challenging when the domain occupied by the elastic
body is multiply connected, for example an infinite elastic plane containing mul-
tiple interacting pores or multiple interacting rigid inhomogeneities. Crowdy [3]
introduced a conformal mapping function for quadrature domains to solve the
plane elasticity problem of an infinite elastic plane containing two interacting
equal symmetric pores. The pair of analytic functions characterizing the stress
field in the elastic body can be written explicitly in terms of the Schottky–
Klein prime function. Crowdy’s method has been recently applied by Wang
and Schiavone [4] to study two interacting identical non-circular compressible
liquid inclusions embedded in an infinite isotropic elastic matrix subjected to
uniform remote in-plane stresses.
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In this paper we continue our recent accomplishments in this direction and
study the plane elasticity problem associated with two interacting equal sym-
metric rigid inhomogeneities embedded in an infinite isotropic elastic matrix
subjected to uniform remote in-plane normal and shear stresses. Through the
introduction of a conformal mapping function for the doubly connected quadra-
ture domain occupied by the matrix [3] and analytic continuation [2], the pair
of analytic functions can be expressed explicitly in terms of the Schottky–Klein
prime function. Analytical solutions for the two loading cases of uniform remote
normal stresses and a uniform remote shear stress are derived. In particular, the
rigid body rotation of each rigid inhomogeneity induced by remote shear stress is
obtained by imposing the condition of balance of moments around each rigid in-
homogeneity. The three regular integrals appearing in the expression for rigid
body rotation are evaluated by the trapezoidal rule [3]. The remote asymptotic
behaviors of the pair of analytic functions are determined once the five cor-
responding regular integrals are evaluated. Numerical results for the rigid body
rotation of each rigid inhomogeneity and the remote asymptotic behaviors of the
pair of analytic functions are presented. When the conformal modulus in the con-
formal mapping function approaches zero and unity, the rigid body rotation of
each rigid inhomogeneity and remote behaviors of the pair of analytic functions
are in agreement with available results for an isolated rigid elliptical or circular
inhomogeneity [5–8].

2. Muskhelishvili’s complex variable formulation

A Cartesian coordinate system {xi} (i = 1, 2, 3) is established. For the in-
plane deformations of an isotropic elastic material, the three in-plane stresses
(σ11, σ22, σ12), two in-plane displacements (u1, u2) and two stress functions
(ϕ1, ϕ2) are given in terms of two analytic functions φ(z) and ψ(z) of the complex
variable z = x1 + ix2 as [1]:

(2.1)
σ11 + σ22 = 2[φ′(z) + φ′(z)],

σ22 − σ11 + 2iσ12 = 2[z̄φ′′(z) + ψ′(z)],

and

(2.2)
2µ(u1 + iu2) = κφ(z)− zφ′(z)− ψ(z),

ϕ1 + iϕ2 = i[φ(z) + zφ′(z) + ψ(z)],

where κ = 3 − 4ν for plane strain and κ = (3− ν)/(1 + ν) for plane stress,
µ and ν (0 ≤ ν ≤ 1/2) are the shear modulus and Poisson’s ratio, respectively.
In addition, the stresses are related to the two stress functions through [9]:
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(2.3)
σ11 = −ϕ1,2, σ12 = ϕ1,1,

σ21 = −ϕ2,2, σ22 = ϕ2,1.

3. Preliminary

As shown in Fig. 1, we consider two equal symmetric rigid non-circular
inhomogeneities embedded in an infinite isotropic elastic matrix subjected to
uniform remote in-plane normal and shear stresses (σ∞11, σ

∞
22, σ

∞
12). The two

rigid inhomogeneities are perfectly bonded to thematrix through the left and right
inhomogeneity-matrix interfaces L1 and L2. The rigid body rotation at infinity
is zero.

Fig. 1. Two equal symmetric rigid non-circular inhomogeneities embedded in an infinite
isotropic elastic matrix subjected to uniform remote in-plane normal and shear stresses.

We introduce the following conformal mapping function for the matrix [3]:

(3.1) z = ω(ξ) = R
P (−ξ√ρ)P (−ξ√ρ)P (ξ

√
ρ)

P (ξ
√
ρ)P (ξ

√
ρeiθ)P (ξ

√
ρe−iθ)

, ρ ≤ |ξ| ≤ 1,

where R, θ and the conformal modulus ρ governing the interaction of the two
rigid inhomogeneities are real constants, and

(3.2) P (ξ) = (1− ξ)P̂ (ξ), P̂ (ξ) =

+∞∏
k=1

(1− ρ2kξ)(1− ρ2kξ−1).
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As shown in Fig. 2, using the mapping function in Eq. (3.1), the doubly con-
nected quadrature domain occupied by the matrix is mapped onto the annulus
ρ ≤ |ξ| ≤ 1; the left inhomogeneity-matrix interface L1 is mapped onto the
unit circle |ξ| = 1 and the right inhomogeneity-matrix interface L2 is mapped
onto the inner concentric circle |ξ| = ρ; the point z =∞ is mapped onto ξ =

√
ρ

and the point z = 0 is mapped onto ξ = −√ρ.

Reξ

Imξ

ρ
1/2-ρ1/2

|ξ|=ρ

|ξ|=1

Fig. 2. The image ξ-plane.

The continuity of displacements across the two perfect interfaces L1 and L2

can be expressed in terms of the pair of analytic functions φ(z) and ψ(z) defined
in the matrix as:

(3.3)
κφ(z)− zφ′(z)− ψ(z) = 2iµ$21z + γ, z ∈ L1,

κφ(z)− zφ′(z)− ψ(z) = 2iµ$21z − γ, z ∈ L2,

where $21 = 1
2(u2,1 − u1,2) is the unknown rigid body rotation of each rigid

inhomogeneity and γ is an unknown complex constant.
The pair of analytic functions φ(z) and ψ(z) can be written in the following

form:

(3.4)
φ(z) = φ1(z) +

σ∞11 + σ∞22

4
z,

ψ(z) = ψ1(z) +
σ∞22 − σ∞11 + 2iσ∞12

2
z,

where φ1(z) ∼= O(1), ψ1(z) ∼= O(1) as |z| → ∞. Thus φ1(z) and ψ1(z) are the
perturbed parts of φ(z) and ψ(z) due to the presence of the two rigid inhomo-
geneities.
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Substitution of Eq. (3.4) into Eq. (3.3) yields:

(3.5)

κφ1(z)− zφ′1(z)− ψ1(z)

=

[
2iµ$21 −

(κ− 1)(σ∞11 + σ∞22)

4

]
z +

σ∞22 − σ∞11 − 2iσ∞12

2
z̄ + γ, z ∈ L1,

κφ1(z)− zφ′1(z)− ψ1(z)

=

[
2iµ$21 −

(κ− 1)(σ∞11 + σ∞22)

4

]
z +

σ∞22 − σ∞11 − 2iσ∞12

2
z̄ − γ, z ∈ L2.

Considering the mapping function in Eq. (3.1), the interface conditions in
Eq. (3.5) can be expressed in the ξ-plane as:

(3.6)

κφ̄1

(
1

ξ

)
−ω̄
(

1

ξ

)
φ′1(ξ)

ω′(ξ)
− ψ1(ξ)

= −
[
2iµ$21 +

(κ− 1)(σ∞11 + σ∞22)

4

]
ω̄

(
1

ξ

)
+
σ∞22 − σ∞11 + 2iσ∞12

2
ω(ξ) + γ̄, |ξ| = 1,

κφ̄1

(
ρ2

ξ

)
−ω̄
(
ρ2

ξ

)
φ′1(ξ)

ω′(ξ)
− ψ1(ξ)

= −
[
2iµ$21 +

(κ− 1)(σ∞11 + σ∞22)

4

]
ω̄

(
ρ2

ξ

)
+
σ∞22 − σ∞11 + 2iσ∞12

2
ω(ξ)− γ̄, |ξ| = ρ,

where for convenience we write φ1(ξ) = φ1(ω(ξ)) and ψ1(ξ) = ψ1(ω(ξ)). The
technique of analytic continuation [2] has been applied in writing Eq. (3.6).

Subtracting the two conditions in Eq. (3.6) and making use of the following
property for quadrature domains [3]:

(3.7) ω̄

(
ρ2

ξ

)
= ω̄

(
1

ξ

)
,

we arrive at

(3.8) φ̄1

(
ρ2

ξ

)
−φ̄1

(
1

ξ

)
= −2γ̄

κ
,

or equivalently

(3.9) φ1(ρ2ξ)− φ1(ξ) = −2γ

κ
.
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It follows from Eq. (3.6)1 that

κφ1(ξ) =

[
2iµ$21 −

(κ− 1)(σ∞11 + σ∞22)

4

]
ω(ξ)(3.10)

+
σ∞22 − σ∞11 − 2iσ∞12

2
ω̄

(
1

ξ

)
+ω(ξ)

φ̄′1
(

1
ξ

)
ω̄′
(

1
ξ

) + ψ̄1

(
1

ξ

)
+ γ,

which serves as an analytic continuation of φ1(ξ) across |ξ| = 1.
In the ensuing two sections, mainly with the aid of the conformal mapping

in Eq. (3.1) and the analytic continuation in Eq. (3.10), we derive analytical so-
lutions for the two loading cases of uniform remote normal stresses with σ∞12 = 0
and a uniform remote shear stress with σ∞11 = σ∞22 = 0, respectively in view of
the fact that the solution structures for the two loading cases are different.

4. Remote normal stresses (σ∞12 = 0)

When the matrix is subjected to uniform remote normal stresses σ∞11 and σ∞22,
we have $21 = 0. Considering Eq. (3.10) with σ∞12 = 0 and $21 = 0, the analytic
function φ1(ξ) takes the form:

(4.1) φ1(ξ) = −(κ− 1)(σ∞11 + σ∞22)

4
[AK(ξ

√
ρeiθ) +BK(ξ

√
ρe−iθ)]

+
σ∞11 − σ∞22

2
[CK(ξ

√
ρ) +DK(ξ

√
ρeiθ) + EK(ξ

√
ρe−iθ)] + F, ρ ≤ |ξ| ≤ 1

ρ
,

where A, B, C, D, E, and F are unknown complex constants to be determined,
and

(4.2) K(ξ) =
ξP ′(ξ)

P (ξ)
= − ξ

1− ξ
+

+∞∑
n=1

(
− ρ2nξ

1− ρ2nξ
+

ρ2n/ξ

1− ρ2n/ξ

)
.

Substituting Eq. (4.1) into Eq. (3.10) and equating the residues of the three
simple poles at ξ = e±iθ/

√
ρ, 1/

√
ρ, we obtain:

(4.3)

A = B = − 1
L(ρ)+L(ρe−2iθ)

X − κeiθ√
ρā

,

C = −
√
ρb

κ
, D = E =

CL(ρe−iθ)

X
A,
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where

(4.4)

L(ξ) = ξ
dK(ξ)

dξ
= −

+∞∑
n=0

ρ2nξ

(1− ρ2n/ξ)2
−

+∞∑
n=1

ρ2n/ξ

(1− ρ2n/ξ)2
,

a = − R
√
ρeiθ

P (−e−iθ/ρ)P (e−iθ)P (−e−iθ)

P̂ (1)P (e−iθ/ρ)P (e−2iθ)
,

b =
RP (−1)P (−ρ)P (ρ)
√
ρP̂ (1)P (ρeiθ)P (ρe−iθ)

,

X = X̄ =
RP (−eiθ)P (ρeiθ)P (−ρeiθ)

P (eiθ)P (ρe2iθ)P (ρ)

× [K(−eiθ) +K(ρeiθ) +K(−ρeiθ)−K(eiθ)−K(ρe2iθ)−K(ρ)].

It is seen from Eq. (4.3) that the five constants A, B, C, D, and E are in
fact real valued. In view of Eq. (4.3), we can rewrite Eq. (4.1) in the following
form

φ1(ξ) = A

[
−(κ− 1)(σ∞11 + σ∞22)

4
+
CL(ρe−iθ)(σ∞11 − σ∞22)

2X

]
(4.5)

×
[
K(ξ
√
ρeiθ) +K(ξ

√
ρe−iθ)

]
+
C(σ∞11 − σ∞22)

2
K(ξ
√
ρ) + F, ρ ≤ |ξ| ≤ 1

ρ
.

Substituting Eq. (4.5) into Eq. (3.9) and using the following property [3]

(4.6) K(ρ2ξ) = K(ξ)− 1,

we arrive at the constant γ as follows

(4.7) γ =
κA

4

[
−(κ−1)(σ∞11 +σ∞22)+

2CL(ρe−iθ)(σ∞11−σ∞22)

X

]
+
κC(σ∞11−σ∞22)

4
,

which indicates that γ is real valued.
Using Eq. (4.5) to enforce the following condition that

(4.8) φ1(z)|z=0 = φ1(ξ)|ξ=−√ρ = 0,

we arrive at the constant F :

F = −A
[
−(κ− 1)(σ∞11 + σ∞22)

4
+
CL(ρe−iθ)(σ∞11 − σ∞22)

2X

]
(4.9)

× [K(−ρeiθ) +K(−ρe−iθ)]− C(σ∞11 − σ∞22)

2
K(−ρ)

=
C(σ∞22 − σ∞11)

2
K(−ρ),

which indicates that the constant F is also real valued.
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Now the analytic function φ1(ξ) has been completely determined. The
other analytic function ψ1(ξ) can be obtained from the analytic continuation
in Eq. (3.10) as

ψ1(ξ) =
(κ− 1)(σ∞11 + σ∞22)

4
ω̄

(
1

ξ

)
+
σ∞11 − σ∞22

2
ω(ξ)(4.10)

+ κφ̄1

(
1

ξ

)
−ω̄
(

1

ξ

)
φ′1(ξ)

ω′(ξ)
− γ, ρ ≤ |ξ| ≤ 1.

Substituting φ1(ξ) and ψ1(ξ) obtained above into Eq. (3.4) and then the
resulting expressions into Eqs. (2.1) and (2.21, we arrive at the elastic field of
stresses and displacements in the matrix due to uniform remote normal stresses
σ∞11 and σ∞22.

5. Remote shear stress (σ∞11 = σ∞22 = 0)

Considering Eq. (3.10) with σ∞11 = σ∞22 = 0, φ1(ξ) takes the form:

(5.1) φ1(ξ) = 2iµ$21

[
AK(ξ

√
ρeiθ) +BK(ξ

√
ρe−iθ)

]
+ iσ∞12

[
CK(ξ

√
ρ) +DK(ξ

√
ρeiθ) + EK(ξ

√
ρe−iθ)

]
+ F, ρ ≤ |ξ| ≤ 1

ρ
,

where A, B, C, D, E, and F are unknown complex constants to be determined.
Substituting Eq. (5.1) into Eq. (3.10) and equating the residues of the three

simple poles at ξ = e±iθ/
√
ρ, 1/

√
ρ, we obtain:

(5.2)

A = B =
1

L(ρ)+L(ρe−2iθ)
X + κeiθ√

ρā

,

C = −
√
ρb

κ
, D = E = −CL(ρe−iθ)

X
A,

which indicates that the five constants A, B, C, D, and E are in fact real valued.
In view of Eq. (5.2), we can rewrite Eq. (5.1) in the following form:

φ1(ξ) = iA

[
2µ$21 −

CL(ρe−iθ)σ∞12

X

][
K(ξ
√
ρeiθ) +K(ξ

√
ρe−iθ)

]
(5.3)

+ iCσ∞12K(ξ
√
ρ) + F, ρ ≤ |ξ| ≤ 1

ρ
.

The other analytic function ψ1(ξ) can be obtained from the analytic contin-
uation in Eq. (3.10) as:

ψ1(ξ) = 2iµ$21ω̄

(
1

ξ

)
−iσ∞12ω(ξ) + κφ̄1

(
1

ξ

)
(5.4)

− ω̄
(

1

ξ

)
φ′1(ξ)

ω′(ξ)
− γ̄, ρ ≤ |ξ| ≤ 1.
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The resultant moment about the origin on the non-circular boundary L1

should be zero. This condition results in

(5.5) Re

{ ∫
|ξ|=1

ψ1(ξ)ω′(ξ) dξ
}

= 0.

By substituting Eqs. (5.4) into Eq. (5.5) and making the use of Eq. (5.3), we
finally obtain

(5.6)
$21

ε∞12

=
C(κ+ 1)

[AI2L(ρe−iθ)
X − I3

]
2I1 +AI2(κ+ 1)

,

where

(5.7) ε∞12 =
σ∞12

2µ
,

and

(5.8)

I1 = −1

2
Im

{ ∫
|ξ|=1

ω(ξ)ω′(ξ) dξ
}
,

I2 = Im

{ ∫
|ξ|=1

[
K(ξ
√
ρeiθ) +K(ξ

√
ρe−iθ)

]
ω′(ξ) dξ

}
,

I3 = Im

{ ∫
|ξ|=1

K(ξ
√
ρ)ω′(ξ) dξ

}
.

In Eq. (5.8), I1 is the area of each non-circular inhomogeneity. Once the three
regular integrals in Eq. (5.8) are evaluated by the trapezoidal rule [3], the rigid
body rotation of each rigid inhomogeneity can be determined from Eq. (5.6).
We illustrate in Fig. 3 the calculated $21/ε

∞
12 for different values of ρ and κ.

It is seen from Fig. 3 that: (i) the magnitude of $21/ε
∞
12 decreases as ρ increases

and/or κ increases (Poisson’s ratio decreases); (ii) as ρ→ 0 for two rigid elliptical
inhomogeneities elongated in the x2-direction each with an aspect ratio of 1/3 set
far apart from each other, $21/ε

∞
12 = m(κ+ 1)/(κ+m2) with m = −0.5, which

is in agreement with the result for an isolated rigid elliptical inhomogeneity under
remote shear [6–8]; (iii) as ρ→ 1 (the circumscribed boundary tends to a circle),
$21/ε

∞
12 = 0 as expected (a rigid circular inhomogeneity will not undergo any

rigid body rotation under any remote stress).
Substituting Eq. (5.3) into Eq. (3.9) and using the property in Eq. (4.6), we

arrive at the constant γ as

(5.9) γ = iκA

[
2µ$21 −

CL(ρe−iθ)σ∞12

X

]
+

iκCσ∞12

2
,

which indicates that γ is purely imaginary.
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ρ
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-0.6

-0.5
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0
̟

2
1
/ǫ

1
2

∞

θ=2π/3

κ=1

κ=1.5

κ=2

κ=3

Fig. 3. Variations of $21/ε
∞
12 as a function of ρ and κ with θ = 2π/3.

Using Eq. (5.3) to enforce the condition in Eq. (4.8), we arrive at the con-
stant F as

F = −iA

[
2µ$21 −

CL(ρe−iθ)σ∞12

X

][
K(−ρeiθ) +K(−ρe−iθ)

]
(5.10)

− iCσ∞12K(−ρ)

= −iCσ∞12K(−ρ),

which indicates that F is purely imaginary.
Now the pair of analytic functions in Eqs. (5.3) and (5.4) has been completely

determined. The elastic field of stresses and displacements in the matrix due to
the remote shear stress σ∞12 is now found by substituting Eqs. (5.3) and (5.4)
into Eq. (3.4) and the subsequent results into Eqs. (2.1) and (2.2).

6. Remote behaviors of φ1(z) and ψ1(z)

When subjected to uniform remote normal stresses σ∞11 and σ∞22, the remote
asymptotic behaviors of φ1(z) and ψ1(z) can be derived as:

(6.1) φ1(z) ∼=
λ1

z
+O

(
1

z2

)
, ψ1(z) ∼=

λ2

z
+O

(
1

z2

)
, |z| → ∞,

where λ1 and λ2 are two real numbers given by:
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(6.2)

λ1 = λ̄1 = − 1

π
Im

{ ∫
|ξ|=1

φ1(ξ)ω′(ξ) dξ
}

=
AI4

4π

[
(κ− 1)(σ∞11 + σ∞22)− 2CL(ρe−iθ)(σ∞11 − σ∞22)

X

]
+
CI5(σ∞22 − σ∞11)

2π
,

λ2 = λ̄2 = − 1

π
Im

{ ∫
|ξ|=1

ψ1(ξ)ω′(ξ) dξ
}

=
κ− 1

2π

{
I1(σ∞11 + σ∞22)

+AI2

[
(κ− 1)(σ∞11 + σ∞22)

2
− CL(ρe−iθ)(σ∞11 − σ∞22)

X

]
+ CI3(σ∞22 − σ∞11)

}
,

where the real constants A and C are given by Eq. (4.3), I1, I2 and I3 are
determined by Eq. (5.8), and the two real constants I4 and I5 are determined by
the following two integrals:

(6.3)

I4 = Im

{ ∫
|ξ|=1

[
K(ξ
√
ρeiθ) +K(ξ

√
ρe−iθ)

]
ω′(ξ) dξ

}
,

I5 = Im

{ ∫
|ξ|=1

K(ξ
√
ρ)ω′(ξ) dξ

}
.

When subjected to the uniform remote shear stress σ∞12, the remote asymp-
totic behaviors of φ1(z) and ψ1(z) are derived as:

(6.4) φ1(z) ∼=
iλ3

z
+O

(
1

z2

)
, ψ1(z) ∼= O

(
1

z2

)
, |z| → ∞,

where λ3 is a real number given by

λ3 = λ̄3 =
1

π

∫
|ξ|=1

φ1(ξ)ω′(ξ) dξ(6.5)

= −AI4

π

[
2µ$21 −

CL(ρe−iθ)σ∞12

X

]
−CI5σ

∞
12

π
,

with the real constants A and C given by Eq. (5.2).
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We need to evaluate the two regular integrals in Eq. (6.3) in addition to the
three regular integrals in Eq. (5.8) to identify the remote asymptotic behaviors of
φ1(z) and ψ1(z). We illustrate in Figs. 4 and 5 the remote asymptotic behaviors
of φ1(z) and ψ1(z) under uniform remote normal stresses. The results in Figs. 4
and 5 as ρ→ 1 agree with those for a rigid circular inhomogeneity [5]. The results
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∞ )

Fig. 4. Variations of πλ1/(I1σ
∞
22) and πλ2/(I1σ

∞
22) as functions of ρ with θ = 2π/3, κ = 2,

σ∞11 = −σ∞22 .
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Fig. 5. Variations of πλ1/(I1σ
∞
22) and πλ2/(I1σ

∞
22) as functions of ρ with θ = 2π/3, κ = 2,

σ∞11 = σ∞22 .
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in Figs. 4 and 5 as ρ → 0 recover the following analytical solution derived
previously for two rigid elliptical inhomogeneities elongated in the x2-direction
with the major axis three times larger than the minor axis set far apart from
each other

(6.6)

πλ1

I1
=
σ∞22(2+m−κm)−σ∞11(2−m+κm)

2κ(1−m2)
,

πλ2

I1
=
σ∞22[m(2+m)−κ(1+m)2+κ2]−σ∞11[m(2−m)+κ(1−m)2−κ2]

2κ(1−m2)
,

where m = −0.5.
When m = 0 for a rigid circular inhomogeneity, Eq. (6.6) reduces to

(6.7)

πλ1/2

I1/4
=

2(σ∞22 − σ∞11)

κ
,

πλ2/2

I1/4
= (κ− 1)(σ∞11 + σ∞22),

which are simply the results as ρ → 1 in Figs. 4 and 5. Note that the area
enclosed by L1 is one quarter of that enclosed by the circumscribed boundary
(a circle) while in Eq. (6.7) I1 is the area of a circle.

The above asymptotic behaviors of φ1(z) and ψ1(z) in Eqs. (6.1) and (6.4)
are related to the compressibility and shear compliance of the two identical rigid
non-circular inhomogeneities [5, 10–13].

It is further deduced from Eqs. (6.1) and (6.2) that φ1(z) ∼= O(z−2) as
|z| → ∞ when the following condition is met

(6.8)
σ∞11

σ∞22

=
AI4(κ− 1) + 2CI5 + 2ACI4L(ρe−iθ)

X

−AI4(κ− 1) + 2CI5 + 2ACI4L(ρe−iθ)
X

.

Also, σ11 + σ22
∼= σ∞11 + σ∞22 + O(|z|−3) as |z| → ∞ when the loading ratio

σ∞11/σ
∞
22 is chosen according to Eq. (6.8), implying that the mean stress within

the matrix is almost undisturbed. Thus, the two rigid inhomogeneities are weakly
harmonic. We illustrate in Fig. 6 the loading ratio σ∞11/σ

∞
22 for different values

of ρ and κ determined by Eq. (6.8). It is seen from Fig. 6 that: (i) σ∞11/σ
∞
22

is a decreasing function of ρ and an increasing function of κ; (ii) as ρ → 0 for
two rigid elliptical inhomogeneities elongated in the x2-direction each with an
aspect ratio of 1/3 set far apart from each other, σ∞11/σ

∞
22 = (3 + κ)/(5− κ),

which is in agreement with the result for an isolated harmonic rigid elliptical
inhomogeneity [14] and which is also the result by setting λ1 = 0 in Eq. (6.6)1;
(iii) σ∞11/σ

∞
22 = 1 as ρ→ 1, which is just the result for a harmonic rigid circular

inhomogeneity.
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Fig. 6. Variations of σ∞11/σ∞22 as a function of ρ and κ determined by Eq. (6.8) with θ = 2π/3.

7. Conclusions

We have solved analytically the plane elasticity problem of two identical rigid
non-circular inhomogeneities in an infinite elastic matrix under uniform remote
normal and shear stresses. The pair of analytic functions φ1(ξ) and ψ1(ξ) due to
remote normal stresses is obtained in Eqs. (4.5) and (4.10) and that due to remote
shear stress in Eqs. (5.3) and (5.4) following the introduction of the conformal
mapping function in Eq. (3.1). By imposing the balance of moments around
each rigid inhomogeneity, the rigid body rotation of each rigid inhomogeneity
induced by the remote shear stress is determined by Eq. (5.6) in which the
three regular integrals in Eq. (5.8) are evaluated using the trapezoidal rule. The
remote asymptotic behaviors of φ1(z) and ψ1(z) are determined by Eqs. (6.1)
and (6.4) containing two new integrals in Eq. (6.3) in addition to the three
integrals in Eq. (5.8).

The two rigid non-circular inhomogeneities studied in this paper can be
viewed as two elastic inhomogeneities whose shear moduli approach infinity. The
two non-circular traction-free pores studied in [3] can be viewed as two elastic in-
homogeneities whose shear moduli approach zero such that their compressibilities
approach infinity. The case of two non-circular incompressible liquid inclusions,
as a special case of [4], can be viewed as that of two elastic inhomogeneities whose
shear moduli approach zero while their Poisson’s ratios approach the value of 1/2
in a specific way compatible with their compressibilities approaching zero [15].

The method based on Laurent series expansion can be used to solve the plane
elasticity problem of two rigid circular inhomogeneities under uniform remote
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in-plane stresses. It is then required to solve a set of coupled linear algebraic
equations to identify the coefficients appearing in the Laurent series expansion
and the rigid body rotations of the two rigid circular inhomogeneities. In this
case, however, the solution method based on the Schottky–Klein prime function
used in this paper becomes invalid since the doubly connected domain occupied
by the matrix is not a quadrature domain.
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