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This study investigates the influence of rotation and couple stresses
on the convective stability of the Navier–Stokes–Voigt fluid under various boundary
conditions, employing both nonlinear (via the energy method) and linear (using the
normal mode analysis method) approaches. The eigenvalue problem is derived for
both analyses and solved using the Galerkin method to obtain the Rayleigh num-
ber. It has been observed that the critical Rayleigh number is identical for both
analyses, confirming global stability and the absence of subcritical instabilities. No-
tably, we find that increasing the couple stress parameter significantly narrows the
spectrum of wave numbers for oscillatory modes. Conversely, higher Taylor numbers
and Kelvin–Voigt parameters expand the wave number spectrum for oscillatory con-
vection. While couple stresses and rotational effects provide stabilizing influences,
the Kelvin–Voigt parameter acts as a destabilizing factor for oscillatory convection.
These findings offer valuable insights with potential applications in improving fluid
stability and thermal management across a wide array of industries, including indus-
trial cooling systems, aerospace engineering, biomedical devices, energy systems, and
environmental engineering.
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1. Introduction

Thermal convection in viscoelastic fluids is a fundamental area of study
in fluid mechanics, with significant implications across various scientific and en-
gineering fields. Unlike Newtonian fluids, viscoelastic fluids exhibit both viscous
and elastic properties, resulting in complex flow behavior. When thermal gradi-
ents come into play, this complexity becomes particularly important for under-
standing the onset of instabilities and the transition to convective motion. In this
context, external factors such as rotation play a role, while stresses, which are
internal forces that arise due to the material’s response to these external influ-
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ences, contribute to the development of these instabilities. Chandrasekhar [1]
extensively reviewed theoretical and experimental insights into thermal insta-
bility, focusing on the Bénard convection in fluid layers. Joseph [2] exam-
ined fluid rheology and various models for viscoelastic fluids. Straughan [3]
presented constitutive equations for the Maxwell, Oldroyd, and Kelvin–Voigt
models, highlighting the sensitivity of solutions to viscoelastic coefficients and
parameters in boundary-initial value problems for the first-order Kelvin–Voigt
fluids. The Kelvin–Voigt model effectively represents linear viscoelastic behavior
under small deformations [4]. Zvyagin and Turbin [5] described the Kelvin–
Voigt model as a parallel combination of viscosity and elasticity, further clas-
sifying it into distinct orders. The zeroth-order Kelvin–Voigt fluid, known as
the Navier–Stokes–Voigt (NSV) fluid [6], characterizes materials with weak vis-
coelastic properties. Recent investigations into thermal convection in NSV fluids,
including those by Straughan [7, 8], Badday and Harfash [9], Basavara-
jappa and Bhatta [10], Kavitha et al. [11], Afluk and Harfash [12], and
Sharma et al. [13], have advanced our understanding of this fluid’s behavior
under various effects.

Couple stresses, a concept used to describe some non-Newtonian fluids, arise
from internal rotational interactions, adding extra stress components to the tra-
ditional viscous stresses. These stresses result from microscopic effects, such
as particle rotation or fluid deformation, and can be treated as higher-order
terms in the stress tensor, similar to the biharmonic plate problem in solids,
which accounts for torsional moments. Stokes [14] developed the theory of
couple stresses in fluids, highlighting their significance in fluids containing large
molecules where these stresses play a crucial role. The influence of couple stresses
on the effective viscosity of magnetic fluids has been explored by Weng [15], pro-
viding insights into how these stresses modify fluid behavior in magnetic fields.
Sunil et al. [16] investigated global stability for thermal convection in couple
stress fluids with free-free boundaries, while Sunil and Devi [17] examined the
same stability in the context of rigid-rigid boundaries. Recent work by Afluk
and Harfash [18] has explored the stability and instability of thermosolutal
convection in the Brinkman–Darcy–Kelvin–Voigt fluid, incorporating the effects
of couple stresses. A number of researchers have further investigated the role of
couple stresses in fluids, including Lin [19], Shivakumara and Kumar [20],
Shankar et al. [21], Mahajan and Nandal [22], Choudhary et al. [23],
Thakur et al. [24], and Afluk and Harfash [25]. These studies highlight the
increasing importance of couple-stress effects in fluid dynamics, with implications
for industrial applications, material processing, and environmental engineering,
offering potential for better designs and more efficient processes.

Rotation refers to the motion of an object or fluid around an axis, significantly
influencing the behavior and dynamics of the system. In fluid mechanics, rotation
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introduces additional forces, such as the Coriolis force, which alter flow charac-
teristics. This phenomenon is vital in understanding fluid behavior in natural sys-
tems like the atmosphere and oceans, as well as in engineering applications such
as rotating machinery. One of the key effects of rotation is its stabilizing influence
on convection, as demonstrated by Galdi and Straughan [26] in their study
of the Bénard problem. They showed how rotation can lead to more stable con-
vection patterns in fluid systems. The impact of rotation extends to complex sys-
tems like convection in porous media. For instance, Sharma et al. [27] explored
the thermosolutal instability of Walters’ rotating fluid in a porous medium, il-
lustrating how rotation affects fluid behavior under varying thermal and solutal
conditions. Similarly, Sunil et al. [28] examined the effects of rotation in the pres-
ence of throughflow during Bénard convection in a porous medium, highlighting
its role in influencing heat transfer and fluid motion in hydromagnetic systems.
Malashetty et al. [29] studied thermal convection in a rotating viscoelastic
fluid saturated porous layer, demonstrating that rotation plays a critical role in
heat transfer processes in such environments. More recently, Thakur et al. [30]
have analyzed the impact of rotation on ferroconvection in a porous medium
with couple stress forces, emphasizing how nonlinear effects and rotation to-
gether influence the system’s stability and behavior. The importance of rotation
in fluid dynamics lies in its ability to modify flow patterns, stabilize or destabilize
convection, and significantly impact heat and mass transfer processes. Its role
is essential in the analysis and design of various fluid systems, both in natural
phenomena and engineered applications.

While many studies have explored the stability of NSV fluids under various
effects, the impact of rotation with different boundary conditions is still not fully
understood. Previous work by Sharma et al. [13] has investigated some aspects
of this topic; however, the influence of couple stresses in the presence of rotation
has not been studied yet. In this study, we extend the analysis by investigating
the combined impact of both couple stresses and rotation on the stability of
NSV fluids, which offers new insights into the interplay between these two fac-
tors across various boundary conditions, including rigid-free (where the bottom
surface is rigid and the top boundary is free), free-free, and rigid-rigid config-
urations. Section 2 establishes the governing equations for the system, incor-
porating perturbation and nondimensionalization to enable analytical progress.
In Section 3, nonlinear analysis is performed using the energy method, with the
variational principle employed to derive the eigenvalue problem. In Section 4,
linear stability analysis is conducted using the normal mode method, leading to
the formulation of an eigenvalue problem specific to this approach. Section 5 de-
scribes the numerical methods utilized to solve the eigenvalue problems derived
in Section 3 and Section 4. Section 6 presents the results and their discussion, in-
cluding graphical representations that illustrate the influence of key parameters
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on the system’s stability. The concluding section highlights the key findings and
contributions of this study, which, to the best of our knowledge, is a pioneering
exploration of these aspects of thermal convection in NSV fluids.

2. Mathematical formulation

Consider an incompressible Navier–Stokes–Voigt fluid layer of infinite length
and thickness ‘d’, subjected to heating from below in the presence of couple
stress forces. The system is rotating with an angular velocity Ω = (0, 0,Ω) about
the z-axis. The temperature at the lower boundary z = 0 is To, and at the upper
boundary z = d, it is Td, ensuring a uniform temperature gradient

(
β =

∣∣dT
dz

∣∣)
across the fluid layer. The force of gravity g = −gk̂ acts in the negative direction
of z-axis, opposing the buoyant forces induced by the temperature difference. The
geometric setup is depicted in Fig. 1.

Fig. 1. Geometrical configuration.

The governing equations for the incompressible rotating Navier–Stokes–Voigt
fluid system, considering the presence of couple stresses, are as follows [7, 13, 18]:

The equation of continuity

(2.1) ∇ · q = 0.

Equations of motion

ρo

(
(1− λ̂∇2)

∂

∂t
+ q · ∇

)
q = −∇p+

(
µ− µ′∇2

)
∇2q(2.2)

+ ρogαT k̂ + 2ρo (q×Ω) .

The derivation of the equation of motion for an NSV fluid in the presence of
couple stresses is provided in Appendix A.
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The energy equation

(2.3)
∂T

∂t
+ (q · ∇)T = κ∇2T.

The equation of state

(2.4) ρ = ρo
(
1− α(T − To)

)
.

Here, we denote the quantities as follows: q = (u, v, w) for velocity, ρ for
density, ρo for reference density, p for pressure, λ̂ for the Kelvin–Voigt coefficient,
µ′ for the coefficient of couple stress viscosity, µ for the coefficient of viscosity,
t for time, α for the coefficient of thermal expansion, and κ for thermal diffusivity.
Also, ∇ ≡

(
∂
∂x ,

∂
∂y ,

∂
∂x

)
and ∇2 ≡ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

The basic state, which is assumed to be steady, is represented as follows:

(2.5)
q = qb = 0, T = Tb(z) = −βz + To,

p = pb(z), ρ = ρb(z) = ρo(1 + αβz).

Here, the subscript b denotes the basic state.
To investigate the stability or instability of the NSV fluid with couple stresses

and rotational effects, we perturb the system with disturbances q′, p′, and θ in
velocity, pressure, and temperature, respectively. The system of equations, with
the apostrophes removed from the perturbed quantities, becomes:

∇ · q = 0,(2.6)

ρo

(
∂q

∂t
+ (q · ∇)q− (λ̂∇2)

∂q

∂t

)
= −∇p+ (µ− µ′∇2)∇2q(2.7)

+ ρogαθk̂ + 2ρo(q×Ω),

∂θ

∂t
+ (q · ∇)θ = βw + κ∇2θ.(2.8)

To non-dimensionalize the perturbed equations, we use following scales:

(2.9)

z = dz∗, t =
ρod

2

µ
t∗, q =

µ

ρod
q∗, p =

µ2

ρod2
p∗,

θ =
µ

ρod

√
βµ

κgαρo
θ∗, λ̂ = tνλ∗,

and the following non-dimensional parameters are introduced:

(2.10) Ra =
αgβd4

νκ
, F =

1

ν

µ′

ρod2
, Pr =

ν

κ
, Ta =

(
2Ωd2

ν

)2

,
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namely the Rayleigh number, the couple stress parameter, the Prandtl number,
and the Taylor number respectively.

Using scales mentioned in (2.9) and non-dimensional parameters in (2.10) in
the perturbed Eqs. (2.6)–(2.8), we derive the non-dimensional equations (drop-
ping ‘*’s) as follows:

∇ · q = 0,(2.11) (
∂q

∂t
+ (q · ∇)q− (λ∇2)

∂q

∂t

)
= −∇p+∇2q− F∇4q(2.12)

+ Ra1/2θk̂ + Ta1/2(q× k̂),

Pr

(
∂θ

∂t
+ (q · ∇)θ

)
= Ra1/2w +∇2θ.(2.13)

The curl of the velocity vector yields the vorticity, i.e., ζ = k̂ · curl q, which
represents the rotational motion within the fluid. By analyzing the third com-
ponent of the vorticity equation, we gain insight into the behavior of rotational
effects and the development of vertical structures, such as convective rolls or
cells. By applying k̂ · curl on Eq. (2.12), and again applying k̂ · curl curl on the
same equation, we obtain:

(1− λ∇2)
∂ζ

∂t
+ k̂ · curl(q · ∇)q = ∇2ζ − F∇4ζ + Ta1/2wz,(2.14)

(1− λ∇2)
∂

∂t
(∇2w) + k̂ · curl curl(q · ∇)q(2.15)

= ∇4w − F∇6w − Ta1/2ζz + Ra1/2∇2
1θ.

Here, ∇2
1 ≡ ∂2

∂x2
+ ∂2

∂y2
represents the horizontal Laplacian. Additionally, wz = ∂w

∂z

and ζz = ∂ζ
∂z .

The boundary conditions (BCs) are

(2.16) w = 0, θ = 0 at z = 0, 1.

Other boundary conditions may vary depending on the specific nature of the
surfaces at z = 0 and 1.

3. Nonlinear analysis

Nonlinear analysis investigates the intricate and interconnected factors in
fluid flow that result in behaviors beyond the scope of linear equations. This
approach assumes small yet finite perturbations during the analysis. On multi-
plying Eq. (2.14) by ζ, Eq. (2.15) by w and Eq. (2.13) by θ and then integrating
over V (is the period cell), we get:
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1

2

d

dt
(‖ζ‖2 + λ‖∇ζ‖2) = −〈ζk̂ · curl(q · ∇)q〉 − ‖∇ζ‖2(3.1)

− F‖∇2ζ‖2 + Ta1/2〈ζwz〉,
1

2

d

dt

(
‖∇w‖2 + λ‖∇2w‖2

)
= −‖∇2w‖2 − F‖∇3w‖2 + Ta1/2〈wζz〉(3.2)

+ Ra1/2〈∇1w∇1θ〉+ 〈wk̂ · curl curl(q · ∇)q〉,
Pr

2

d

dt
‖θ‖2 = −‖∇θ‖2 + Ra1/2〈wθ〉.(3.3)

Here, ∇1 ≡
(
∂
∂x ,

∂
∂y

)
, and 〈·〉 and ‖ ·‖ denote the integration over V and L2 norm

on V, respectively.
By using (3.1), (3.2) and (3.3), we construct the energy E(t), and the change

in energy over time is

(3.4)
dE

dt
= Io +No −Do.

Here,

E =
Pr

2
‖θ‖2 +

λ1
2
‖∇w‖2 +

λλ1
2
‖∇2w‖2 − λ2

2
‖ζ‖2 − λλ2

2
‖∇ζ‖2,(3.5)

Io = Ra1/2〈wθ〉+ λ1Ra1/2〈∇1w∇1θ〉+ λ1Ta1/2〈wζz〉 − λ2Ta1/2〈ζwz〉,(3.6)

Do = ‖∇θ‖2 + λ1‖∇2w‖2 + λ1F‖∇3w‖2 − λ2‖∇ζ‖2 − λ2F‖∇2ζ‖2,(3.7)

No = λ2〈ζk̂ · curl(q · ∇)q〉+ λ1〈wk̂ · curl curl(q · ∇)q〉,(3.8)

where λ1 and λ2 are the positive coupling parameters. The terms Io, Do, and No

represent the production, dissipation, and nonlinear interaction of energy, respec-
tively, with Io contributing to the energy input, Do representing energy losses
due to dissipation, and No accounting for additional energy transfers through
nonlinear interactions.

Define
m = max

H

Io
Do

,

where H is the space of admissible functions.
Then, m < 1 is required, for

(3.9)
dE

dt
≤ −Doao +No.

Here, ao = 1−m (ao > 0).
The generalized energy functional is now defined as

(3.10) Vg(t) = E(t) + boE1(t),
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which is used to control the nonlinear terms and analyze nonlinear stability.
In this case, bo is a positive coupling parameter, and E1(t) represents the com-
plementary energy, expressed as

(3.11) E1(t) =
λ

2
‖∇2q‖2 +

1

2
‖∇q‖2 +

Pr

2
‖∇θ‖2.

The evolution of Vg(t) is given by

(3.12)
dVg(t)

dt
≤ −aoDo +No + boI1 − boD1 + boN1,

where

I1 = 2 Ra1/2〈∇θ · ∇w〉,(3.13)

D1 = ‖∇2q‖2 + F‖∇3q‖2 + ‖∇2θ‖2,(3.14)

N1 = 〈∇2q · (q · ∇)q〉+ Pr〈(q · ∇)θ(∇2θ)〉.(3.15)

We now revisit some embedding theorems and relevant results, expressed as
follows:

(3.16)
sup |G| ≤ C∗‖∇2G‖, ‖∇w‖ ≤ ‖∇q‖, G ∈ {q, θ},

‖K‖2 ≤ 1

π2
‖∇K‖2, 〈ζ · ζ ′〉 ≤ εo

2

2
‖ζ‖2 +

1

2εo2
‖ζ ′‖2,

where C∗ is a constant that depends on the period cell V, and εo is constant.
These theorems and results are discussed by Straughan in his monograph [31].

By substituting (3.7), (3.14), and inequalities (3.16) in (3.13) along with
Young’s and Cauchy–Schwarz inequalities, we derive:

(3.17) boI1 ≤
boεo

2

2
D1 +

2bo Ra

εo2π2
Do.

Defining

(3.18) D2 =
ao
2
Do +

bo
2
D1,

and choosing

bo =
π2ao
4 Ra

, εo
2 = 1.

By applying Eq. (3.18), the inequality presented in (3.17) becomes

(3.19) boI1 ≤ D2.
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The nonlinear termsN1 andNo can be estimated using Eqs. (3.10), (3.11), (3.14),
(3.18), and inequalities (3.16). These estimates are given as follows:

N1 ≤ C∗
(

2

bo

)3/2 1

λ1/2
(Pr1/2 + 1)D2

1/2 · Vg,(3.20)

No ≤
C∗

λ1/2

(
2

bo

)3/2(
2λ1 + 2

(
λ2bo
ao

)1/2)
D2

1/2 · Vg.(3.21)

Using inequalities (3.19), (3.20) and (3.21) in the inequality (3.12), we get

(3.22)
dVg
dt
≤ −D2(1− ÃVg),

where

(3.23) Ã =
C∗

λ1/2

(
2

bo

)3/2 1

D2
1/2

(
bo(Pr1/2 + 1) + 2λ1 + 2

(
λ2bo
ao

)1/2)
.

Here, it is important to note that Ã depends on bo
1/2 and λ1/2. We derive

sufficient conditions to ensure that the energy decays monotonically to zero.
Now, to observe the behavior of energy decay, we need to perform some analysis
and formulate the following theorem.

Theorem.

Hypothesis: Let Vg(0) < Ã−1 and 0 < m < 1. The value of Ã is given by
Eq. (3.23).
Conclusion: Then, there exists a constant K∗ > 0 such that, for all t ≥ 0, the
following inequality holds:

(3.24) Vg(t) ≤ Vg(0) exp(−K∗(1− ÃVg(0))t).

Proof. The inequality (3.22), and hypothesis ensures that

dVg
dt
≤ 0.

From the inequality (3.22), we obtain, using a recursion argument (see Ap-
pendix B), that:

(3.25)
dVg
dt
≤ −D2(1− ÃVg(0)), ∀t ≥ 0.

We need to demonstrate that there exists a number K∗ > 0 such that

(3.26) K∗Vg(t) ≤ D2.
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In Eq. (3.10), using Eqs. (3.7), (3.14) and (3.18), we have the result

Vg(t) ≤
1

π2

(
1 + Pr +π2λ

)(
1 +

1

π2
+

λ

Fπ2

)(
1 +

m

1−m

)
D2.

Assume that

(3.27) Ko ≥
m

1−m
, where Ko > 0.

Let

K∗ =
π2

(1 + Pr +π2λ)
(
1 + 1

π2 + λ
Fπ2

)
(1 +Ko)

.

Using this value of K∗, the inequality (3.25) becomes

(3.28)
dVg
dt
≤ −K∗(1− ÃVg(0))Vg(t), ∀t ≥ 0.

On integrating the inequality (3.28), we get

Vg(t) ≤ Vg(0) exp(−K∗(1− ÃVg(0))t).

This completes the proof. �

Variational principle

The variational principle is employed to derive governing equations by mini-
mizing or maximizing a functional, often associated with energy or action. This
method plays a vital role in nonlinear analysis, particularly for investigating the
impact of small disturbances on a base flow. By applying the variational prin-
ciple, eigenvalue problems can be formulated to evaluate the stability of flow
structures, determine disturbance growth rates, and pinpoint stable or unstable
regions in complex nonlinear systems.

We utilize the calculus of variations to assess the maximum problem at the
critical argument m = 1. Taking transformations w = ŵ√

λ1
and ζ = ζ̂√

λ2
for

Eqs. (3.6) and (3.7), the associated Euler–Lagrange equation δIo − δDo = 0
gives the results:

Ra1/2√
λ1

θ − λ11/2 Ra1/2∇1
2θ +

(λ1 + λ2)√
λ1λ2

Ta1/2ζz − 2∇4w + 2F∇6w = 0,(3.29)

Ra1/2√
λ1

w − λ11/2 Ra1/2∇1
2w + 2∇2θ = 0,(3.30)

(λ1 + λ2)√
λ1λ2

Ta1/2wz + 2∇2ζ − 2F∇4Z = 0.(3.31)
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The plane tiling form is now assumed as

(3.32) {w, θ, ζ} = {W (z),Θ(z), Z(z)}Ψ(x, y),

where, Ψ denotes shape of the stability cell, (see Chandrasekhar [1, p. 43–52]).
The plane tiling form is a mathematical representation used in the stability

analysis and fluid dynamics to describe spatially periodic perturbations. It ex-
presses perturbations in terms of separable functions, where the depth-dependent
components W (z), Θ(z) and Z(z) capture variations in the vertical direction,
while the function Ψ(x, y) defines the horizontal spatial structure. The func-
tion Ψ(x, y) satisfies ∇2

1Ψ = −a2Ψ, where a is the wave number, determining
the periodicity of the tiling pattern. This equation ensures that Ψ(x, y) exhibits
sinusoidal or exponential behavior, characterizing the repeating structure of in-
stability modes.

Using the plane tiling form (3.32) in Eqs. (3.29)–(3.31), the eigenvalue prob-
lem we obtain takes the form:

2(D2 − a2)2W − 2F (D2 − a2)3W −
(

Ra

λ1

)1/2

Θ(3.33)

− λ11/2 Ra1/2 a2Θ− (λ1 + λ2)√
λ1λ2

Ta1/2DZ = 0,

2(D2 − a2)Θ +

(
Ra

λ1

)1/2

W + λ1
1/2 Ra1/2 a2W = 0,(3.34)

2(D2 − a2)Z − 2F (D2 − a2)2Z +
(λ1 + λ2)√

λ1λ2
Ta1/2DW = 0,(3.35)

with the boundary conditions:
for free-free surfaces

(3.36) W = D2W = D4W = Θ = DZ = D3Z = 0 at z = 0, 1;

for rigid-free surfaces

(3.37)
W = DW = D3W = Θ = Z = D2Z = 0 at z = 0,

W = D2W = D4W = Θ = DZ = D3Z = 0 at z = 1;

for rigid-rigid surfaces

(3.38) W = DW = D3W = Θ = Z = D2Z = 0 at z = 0, 1.

Here, D ≡ d
dz is the derivative with respect to the vertical coordinate z.
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4. Linear analysis

In linear analysis, the system is subjected to infinitesimally small distur-
bances, allowing the focus to remain on the first-order terms in the perturbation
equations. This method assumes that the deviations are minimal, enabling the
prediction of instability. It provides valuable insights into flow behavior under
small perturbations without requiring a full nonlinear analysis.

We linearize the non-dimensional perturbed Eqs. (2.13)–(2.15) and for the
analysis of linear instability by omitting nonlinear terms. Utilizing the normal
mode analysis method, we assume solutions of the form w(x, t) = w(x)eσt,
θ(x, t) = θ(x)eσt. Subsequently, the linearized non-dimensional equations are
derived as follows:

Prσθ = ∇2θ + Ra1/2w,(4.1)

σ(1− λ∇2)ζ = ∇2ζ − F∇4ζ + Ta1/2wz,(4.2)

σ(1− λ∇2)∇2w = ∇4w − F∇6w + Ra1/2∇2
1θ − Ta1/2ζz.(4.3)

Here, σ represents the growth rate.
Using the plane tiling form (3.32) in Eqs. (4.1)–(4.3), we have the following

eigenvalue problem

PrσΘ = (D2 − a2)Θ + Ra1/2W,(4.4)

σZ − σλ(D2 − a2)Z = (D2 − a2)Z − F (D2 − a2)2Z + Ta1/2DW,(4.5)

σ(D2 − a2)W − σλ(D2 − a2)2W = (D2 − a2)2W − F (D2 − a2)3W(4.6)

− a2 Ra1/2 Θ− Ta1/2DZ,

with the same boundary conditions as those provided in (3.36)–(3.38).

5. Method of solution

The single-term Galerkin method, a well-established approach in numerical
analysis, has been utilized to solve eigenvalue problems. Chandrasekhar [1]
derived the exact solution for free-free boundary conditions. For the cases involv-
ing rigid-rigid and rigid-free boundary conditions, approximate solutions that
satisfy the corresponding boundary conditions are considered. In this context,
the set of solutions

W =
n∑
i=1

GiWi,(5.1)
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Θ =
n∑
i=1

HiΘi,(5.2)

Z =
n∑
i=1

IiZi,(5.3)

where Wi, Θi, Zi are the basis functions and Gi, Hi, Ii are the constants, and
i denotes the iteration number.

For free-free bounding surfaces

As per boundary conditions (3.36), the set of exact solutions are as follows [1]:

(5.4) Wi = sin(iπz), Θi = sin(iπz), Zi =

(
2Ωd

ν

)(
iπ

i2π2 + a2

)
cos(iπz).

For rigid-free bounding surfaces

As per boundary conditions (3.37), the basis functions are as follows [13, 32]:

(5.5)
Wi = −z2i + 3.25z2i+2 − 3.05z2i+3 + 0.8z2i+4,

Θi = zi − 2zi+2 + zi+3, Zi = 8zi − 4zi+2 + zi+3.

For rigid-rigid bounding surfaces

As per boundary conditions (3.38), the basis functions are as follows [13, 32]:

(5.6)
Wi = −0.5z2i + 2.5z2i+2 − 3z2i+3 + z2i+4,

Θi = zi − 2zi+2 + zi+3, Zi = zi − 2

3
zi+2 − 4

3
zi+3 + zi+4.

Using the solutions described in forms (5.1)–(5.3) into the eigenvalue prob-
lems of both analyses, and employing the Galerkin technique, yields a system of
linear homogeneous equations:

DjiGi + EjiHi + FjiIi = 0,(5.7)
PjiGi + QjiHi + RjiIi = 0,(5.8)

SjiGi + TjiHi + UjiIi = 0.(5.9)

The set of the above equations possesses a nontrivial solution when the deter-
minant of the coefficient matrix is zero, which can be expressed as

(5.10)

∣∣∣∣∣∣
Dji Eji Fji
Pji Qji Rji
Sji Tji Uji

∣∣∣∣∣∣ = 0.
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Using (5.10), we get the value of Rayleigh numbers RaN (for nonlinear) and RaL
(for linear).

5.1. The case of nonlinear analysis

The Rayleigh numbers (RaN) for three different bounding surfaces were cal-
culated using the single-term Galerkin method with the help of Mathematica
software. The resulting RaN values are expressed in terms of the parameters a,
Ta, and F . To determine the optimal values of λ1 and λ2, the conditions dRaN

dλ1
= 0

and dRaN
dλ2

= 0 were applied, respectively. It was found that the optimal values
for all bounding surfaces considered in this study are λ1 = λ2 = 1

a2
. Substituting

these optimal values of λ1 and λ2 into the expression of RaN, we obtained the
final result.

5.2. The case of linear analysis

The linear analysis predicts the threshold for the onset of stationary or os-
cillatory convection modes. To identify the stationary and oscillatory convec-
tion modes, we substitute σ = ιω in the Rayleigh numbers (RaL) obtained from
eigenvalue problem (4.4)–(4.6), using the single-term Galerkin method. This sub-
stitution yields the Rayleigh number (RaL) in the form

(5.11) RaL = Rar +ιωRai,

where ω represents the frequency distribution, and Rai and Rar are the imaginary
and real parts of RaL, respectively.

Since the Ra is a physical quantity, it must be real. Consequently, Eq. (5.11)
yields two possible scenarios: either ω = 0, corresponding to stationary con-
vection, or ω 6= 0 with Rai = 0, which indicates the occurrence of oscillatory
convection.

5.2.1. Stationary convection When ω = 0, it indicates the absence of oscillatory
convection, and the system exhibits stationary convection modes. In this case,
the stationary Rayleigh number (Rast) is given by the expression in Eq. (5.11),
which is identical to RaN. The value of Rast is expressed in terms of a, Ta, and F .

5.2.2. Oscillatory convection The occurrence of oscillatory convection requires
ω2 to be positive [31]. The condition Rai = 0 yields an expression for the oscilla-
tion frequency ω2. Using Mathematica software, we explored the range of wave
numbers that support the onset of oscillatory modes for the varying Taylor num-
bers (Ta), the couple stress parameter (F ), and the Kelvin–Voigt coefficients (λ),
while keeping certain non-dimensional parameters fixed. Within this range, the
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corresponding values of ω2 were determined. These values were then utilized to
compute the Rayleigh number for oscillatory modes (Raosc) by substituting ω2

into the real part of RaL.

6. Results and discussion

The Rayleigh numbers, RaN and Rast were calculated for various boundary
conditions using the single-term Galerkin method with the help of Mathematica
software.

For free-free boundary conditions, the Rayleigh number we obtain is

RaN =

a
10F 2 + a8F (2 + 5Fπ2) + a2π4(3 + 8Fπ2 + 5π4F 2)

+a6(1 + 8Fπ2 + 10F 2π4) + a4π2(3 + 12Fπ2

+10F 2π4) + π2(π4 + 2Fπ6 + F 2π8 + Ta)


a2(1 + a2F + π2F )

(6.1)

= Rast .

For rigid-rigid boundary conditions, the Rayleigh number we obtain is

RaN =



52249.2+2.63415×106F+2.17672×106F 2+1.0381a12F 2

+a10F (2.07619+71.1017F )+a8(1.0381+118.457F

+3098.22F 2)+a6(47.3552+4127.3F+81753.6F 2)

+a4(1162.75+81610.6F+1.15248×106F 2)+0.589366 Ta

+a2(13155+764506F+8.01766×106F 2+0.059707 Ta)


a2(10.0038+104.191F+a4F+a2(1+20.0076F ))

(6.2)

= Rast .

For rigid-free boundary conditions, the Rayleigh number we obtain is

RaN =



6333.39 + 156791F + 348709F 2 + 1.07057a12F 2

+a10F (2.14114 + 54.4577F ) + a8(1.07057 + 93.4048F

+1410.31F 2) + a6(38.947 + 1982.2F + 19524.1F 2)

+a4(603.649 + 21683.9F + 130873F 2) + 13.1558 Ta

+a2(3835.03 + 106296F + 364557F 2 + 1.33278 Ta)


a2(2.46774 + 6.09677F + a4F + a2(1 + 4.93548F ))

(6.3)

= Rast .

Here, the identical Rayleigh numbers indicate the non-existence of subcritical
instabilities. This finding strongly supports the global stability.
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Figure 2 illustrates the variations of RaN and Rast and a across various
combinations of boundary conditions, namely free-free, rigid-rigid, and rigid-
free, at Ta = 1000 and F = 0.1. This figure illustrates that the Rast aligns with
the RaN. The overlapping curves confirm the global stability across different
boundary conditions. It has also been noted that the NSV fluid demonstrates
higher stability when enclosed by rigid boundaries, whereas it exhibits the lowest
stability with free boundaries.

Fig. 2. Rayleigh number (RaN and Rast) vs wave number (a) for various combinations of
bounding surfaces at F = 0.1 and Ta = 1000.

Figure 3 illustrates the variation of Rast and Raosc with a for free-free bound-
ary conditions. In Fig. 3(a), as the couple stress parameter (F ) increases, the range
of wave numbers supporting oscillatory convection narrows: from 0 < a < 2.02
for F = 0.05 to 0 < a < 0.34 for F = 0.15. This delays the onset of oscillatory
convection, indicating a stabilizing effect. For stationary convection, the onset
is similarly delayed as F increases, reflecting the stabilizing role of the couple
stress parameter. Figure 3(b) shows that as the Taylor number (Ta) increases,
the wave number range for oscillatory convection broadens: from 0 < a < 1.26
for Ta = 1000 to 0 < a < 4.91 for Ta = 100 000. This expansion is accompanied
by a delay in convection onset, highlighting the stabilizing effect of rotation.
Figure 3(c) reveals that higher Kelvin–Voigt parameters (λ) also expand the os-
cillatory convection range: from 0 < a < 1.26 for λ = 1 to 0 < a < 1.50 for λ = 3,
while the stationary Rayleigh number remains unaffected. An increase in λ also
advances the onset of convection, indicating the destabilizing effect of viscoelas-
ticity. Overall, the couple stress parameter contracts the oscillatory convection
range, while the Taylor number and Kelvin–Voigt parameter expand it.
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(a)

(b)

(c)

Fig. 3. Variations of Rayleigh numbers (Rast and Raosc) with wave number (a) at various
values of, (a) F at Ta = 1000, Pr = 1, λ = 1, (b) Ta at F = 0.1, Pr = 1, λ = 1,

(c) λ at F = 0.1, Ta = 1000, Pr = 1 (for free-free boundary conditions).

Figure 4 illustrates the variation of the Rayleigh numbers (Rast and Raosc)
with the wave number (a) under rigid-rigid boundary conditions for different val-
ues of the couple stress parameter (F ), the Taylor number (Ta), and the Kelvin–
Voigt parameter λ. Each subfigure represents the variation of the Rayleigh num-
bers with respect to the wave number for different values of one parameter, while
keeping the others fixed. In all cases, oscillatory convection is absent as Rast and
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(a)

(b)

(c)

Fig. 4. Variations of Rayleigh numbers (Rast and Raosc) with wave number (a) at various
values of, (a) F at Ta = 1000, Pr = 1, λ = 1, (b) Ta at F = 0.1, Pr = 1, λ = 1, (c) λ at

F = 0.1, Ta = 1000, Pr = 1 (for rigid-rigid boundary conditions).

Raosc coincide, confirming purely stationary convection. The Rayleigh number
initially decreases with an increasing wave number, reaching a minimum at the
most unstable mode before rising again, indicating that higher wave numbers
require stronger thermal driving forces for convection. In Fig. 4(a), increasing F
raises the Rayleigh numbers for all wave numbers, demonstrating the stabilizing
effect of couple stresses, which introduce viscosity-like microstructural interac-
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tions that suppress convection. Similarly, Fig. 4(b) shows that increasing Ta
stabilizes the system by increasing the Rayleigh numbers, highlighting the sta-
bilizing effect of rotation on convective motion. Figure 4(c) reveals that λ has
no significant influence on convection onset, as Rast and Raosc remain identical
for all values, reinforcing the dominance of stationary convection.

Figure 5 shows the variation of Rast and Raosc with a for rigid-free bound-
ary conditions. In Fig. 5(a), the oscillatory convection modes for the rotating

(a)

(b)

(c)

Fig. 5. Variations of Rayleigh numbers (Rast and Raosc) with wave number (a) at various
values of, (a) F at Ta = 1000, Pr = 1, λ = 1, (b) Ta at F = 0.1, λ = 1, Pr = 1,

(c) λ at F = 0.1, Ta = 1000, Pr = 1 (for rigid-free boundary conditions).
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NSV fluid are observed within the wave number ranges of 0 < a < 0.92 for
F = 0.05, 0 < a < 0.54 for F = 0.1, and no oscillatory convection at F = 0.15.
As the couple stress parameter (F ) increases, the range for oscillatory convec-
tion decreases and its onset is delayed, indicating a stabilizing effect. Figure 5(b)
shows that as the Taylor number (Ta) increases from 1000 to 100 000, the
range for oscillatory convection expands (from 0 < a < 0.54 for Ta = 1000
to 0 < a < 3.79 for Ta = 100 000), and convection onset is delayed, indicating
that rotation also stabilizes the fluid. Figure 5(c) illustrates that increasing λ
broadens the spectrum of a for oscillatory convection, from 0 < a < 0.54 for
λ = 1 to 0 < a < 0.62 for λ = 3, while Rast remains unaffected. A higher λ also
advances convection onset, highlighting the destabilizing effect of viscoelasticity.

To identify the critical Rayleigh numbers, which indicates the point at which
convection begins, we first determined the critical wave numbers by solving the
condition dRaN

da = 0 for Eqs. (6.1)–(6.3). We then substituted these critical
wave numbers into Eqs. (6.1)–(6.3), to calculate the corresponding critical Ray-
leigh numbers. Based on the numerical critical Rayleigh numbers, we present the
results graphically.

Figure 6 shows the variations of the critical Rayleigh number (Rac) and the
couple stress parameter (F ) across different combinations of bounding surfaces
(i.e., free-free, rigid-rigid, rigid-free) at Ta = 1000. The curves in the figure rep-
resent the onset of convection. The region below each curve indicates conditions
under which the rotating NSV fluid remains stable, while the region above each
curve signifies instability. The figure also highlights that an increase in the couple
stress parameter (F ) leads to a corresponding increase in the critical Rayleigh
number (Rac), implying that the couple stresses delays the onset of convection,

Fig. 6. Critical Rayleigh number (Rac) vs couple stress parameter (F ) for different
combinations of bounding surfaces at Ta = 1000.
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exerting a stabilizing effect. Moreover, the figure clearly shows that the critical
value of the Rayleigh number is higher for rigid-rigid bounding surfaces com-
pared to free-free and rigid-free bounding surfaces. This indicates that the NSV
fluid is more thermally stable when confined by rigid boundaries and least stable
when both surfaces are free.

Fig. 7. Variation of critical Rayleigh number (Rac) and Taylor number (Ta) for different
combinations of bounding surfaces at F = 0.1.

Figure 7 depicts the variations of the critical Rayleigh number (Rac) and
the Taylor number (Ta) across different combinations of bounding surfaces (i.e.,
free-free, rigid-rigid, rigid-free) at F = 0.1. The figure clearly shows that for
the Taylor numbers ranging from 0 to 4 × 104, the critical Rayleigh number
is highest for rigid-rigid boundaries, followed by free-free, and then rigid-free
boundaries. This suggests that in this range, the NSV fluid exhibits the great-
est thermal stability when confined by rigid-rigid boundaries. Beyond a Taylor
number of 4 × 104, the free-free configuration exhibits a higher critical Ray-
leigh number compared to both the rigid-free and rigid-rigid configurations.
Between 4 × 104 and 8.5× 104, the rigid-rigid boundaries still display a higher
critical Rayleigh number than the rigid-free configuration, but beyond 8.5× 104,
the rigid-free configuration surpasses the rigid-rigid one, though it remains
lower than the free-free configuration. In conclusion, within the Taylor num-
ber range of 0 to 4× 104, the NSV fluid demonstrates superior thermal stability
with rigid-rigid boundaries compared to the other boundary conditions. For the
Taylor numbers exceeding 4×104, the NSV fluid becomes most thermally stable
with free-free boundaries. Additionally, for the Taylor numbers ranging from
0 to 1.48×104, the NSV fluid is least stable under free-free boundary conditions.
In the intermediate range, from 1.48×104 to 8.5× 104, the system becomes least
stable with rigid-free boundaries. However, beyond 8.5× 104, the rigid-rigid con-
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figuration emerges as the least stable, while the free-free boundary configuration
consistently demonstrates the highest stability across all Taylor numbers.

7. Conclusions

The above analysis leads to the following conclusions:

• The Kelvin–Voigt and couple stress parameters significantly affect energy
decay in the system. However, only the Taylor number and the couple stress
parameter govern the stationary Rayleigh number. All three parameters –
Kelvin–Voigt, couple stress, and Taylor number – play an important role
in influencing oscillatory convection behavior and stability transitions.

• The Rayleigh numbers for the nonlinear analysis and stationary convection
are identical, which indicates the non-existence of subcritical instabilities.

• The oscillatory convection mode arises due to the effects of couple stresses,
rotation, and viscoelasticity.

• Fluid confined between rigid-rigid bounding surfaces exhibits enhanced
thermal stability. This configuration is particularly effective for convection
in the rotating NSV fluid, as it promotes a more stable thermal environ-
ment and influences the convection process positively.

• Couple stresses and rotational effects effectively delay the onset of ther-
mal convection, illustrating their stabilizing impact on the fluid system
by dampening convective disturbances. In contrast, viscoelasticity accel-
erates convection onset, revealing its destabilizing influence specifically on
oscillatory convection, while not affecting stationary convection.

The findings of this study provide valuable insights into the stability and
thermal management of NSV fluids under the influence of rotation and cou-
ple stresses. These insights are particularly significant for industrial applications
such as cooling systems and aerospace engineering. In industrial cooling systems,
including power plants and advanced electronic devices, the stabilizing effects
of couple stresses and rotational forces enhance heat exchanger designs, ensur-
ing efficient thermal dissipation and system durability. Similarly, in aerospace
applications, where precise thermal regulation is vital in systems like jet en-
gines and rotating turbines, the study’s findings can guide the development of
advanced cooling mechanisms to maintain reliable performance under extreme
thermal loads.

In renewable energy and environmental engineering, the stability analysis of
NSV fluids under rotational effects and couple stresses is instrumental in op-
timizing thermal energy systems. For example, in solar thermal power plants
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and geothermal systems, the stabilizing impact of these parameters improves
the efficiency of heat transfer and storage processes. Furthermore, environmen-
tal applications such as pollutant removal systems benefit from enhanced con-
trol over fluid stability in configurations subjected to rotational or cyclic forces.
The study’s emphasis on fluid behavior in rigid boundary setups also supports the
development of robust designs for such processes, ensuring operational reliability
and effectiveness.

The research findings have further implications for biomedical devices, civil
engineering, and material development. In biomedical engineering, the stabilizing
properties of couple stresses can enhance the efficiency and reliability of preci-
sion fluid systems such as dialysis machines and drug delivery devices. In civil
engineering, insights into the thermal stability of NSV fluids can support the
design of geothermal foundations and energy-efficient materials for infrastruc-
ture. Additionally, the study contributes to the development of thermally and
mechanically stable viscoelastic materials for advanced applications, ensuring op-
timal performance in systems requiring precise thermal and fluid control. These
findings collectively advance knowledge and innovation in engineering, energy
systems, and environmental technology.

Appendix A

Derivation of the equation of motion for the NSV fluid in the presence
of couple stresses

The constitutive equations proposed by Stokes [14] are

T(ij) = (−p+ ΛDkk)δij + 2µDij ,(A.1)

T[ij] = −2ηWij,kk −
ρ

2
εijsGs,(A.2)

Mij = 4ηωj,i + 4η′ωi,j ,(A.3)

where

(A.4) Dij =
1

2
(qi,j + qj,i), Wij =

1

2
(qi,j − qj,i), ωi =

1

2
εijkqk,j .

Here, Tij , T(ij), T[ij], Mij , Dij , Wij , ωi, Gs, εijk, q, and ρ are stress tensors,
symmetric part of Tij , anti-symmetric part of Tij , couple stress tensor, deforma-
tion tensor, the vorticity tensor, the vorticity vector, body couple, the alternat-
ing unit tensor, velocity field, the density, and material constant, respectively.
The dimensions of material constant Λ and µ are those of viscosity whereas
dimensions of η and η′ are those of momentum.
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The stress for couple stresses in fluids

Tij = T(ij) + T[ij]

=
(
(−p+ ΛDkk)δij + 2µDij

)
+

(
−2ηWij,kk −

ρ

2
εijsGs

)
= −pδij + ΛDkkδij + 2µDij − 2ηWij,kk −

ρ

2
εijsGs

= −pδij + Λqk,kδij + µ(qi,j + qj,i)− η(qi,j − qj,i)−
ρ

2
εijsGs.

Now, in terms of the stress Tij , we can write down the hydrodynamical equation
of motion for the Navier–Stokes–Voigt fluid [1, 7] as

ρo(1− λ̂∇2)
∂qi
∂t

+ ρoqj
∂qi
∂xj

= ρogαTki +
∂

∂xj
Tij(A.5)

= ρogαTki −
∂p

∂xi
+

∂

∂xj

(
Λqk,kδij

+ µ(qi,j + qj,i)− η(qi,j − qj,i)−
ρ

2
εijsGs

)
.

For an incompressible NSV fluid in the absence of a body couple, Eq. (A.5)
becomes:

(A.6) ρo
(
1− λ̂∇2

)∂qi
∂t

+ ρoqj
∂qi
∂xj

= ρogαTki −
∂p

∂xi
+ µqi,jj − η(qi,jj)kk.

The assumption of the absence of a body couple implies that no external torques
or moments are acting on the fluid. This simplification allows the governing
equations to focus on other forces, such as pressure gradients and viscous effects,
without the added complexity of torque-induced stresses.

In the vector form, A.6 can be written as

(A.7) ρo

(
(1− λ̃∇2)

∂

∂t
+ q · ∇

)
q = −∇p+ ρogαT k̂ + µ∇2q− µ′∇4q.

Here, µ′ is responsible for couple stress properties. This is the equation of motion
for the NSV fluid in the presence of couple stresses. The equation of motion for
rotating NSV fluid in the presence of couple stresses becomes:

ρo

(
(1− λ̂∇2)

∂

∂t
+ q · ∇

)
q = −∇p+ (µ− µ′∇2)∇2q + ρogαT k̂ + 2ρo(q×Ω).
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Appendix B

Derivation of Eq. (3.25) from inequality (3.22) using a recursive
argument

We have

(B.1)
dVg
dt
≤ −D2(1− ÃVg).

Let us consider small time steps ∆t and define discrete time points:

(B.2) tn = n∆t, n = 0, 1, 2 . . . ,

where to = 0 corresponds to the initial condition Vg(0). For a small interval ∆t,
we approximate the derivative as

Vg(tn+1)− Vg(tn)

∆t
≈ dVg

dt

∣∣∣∣
t=tn

.

Using (B.1), we get:

(B.3)
Vg(tn+1)− Vg(tn)

∆t
≤ −D2(1− ÃVg),

Vg(tn+1) ≤ Vg(tn)−D2(1− ÃVg)∆t.

This is a recursive inequality that relates Vg(tn+1) to Vg(tn).
Apply this iteratively over multiple time, we get:

(B.4) Vg(tn+1) ≤ Vg(0)−D2

n∑
k=1

(1− ÃVg(tk))∆t.

Since dVg
dt ≤ 0, it follows that Vg(t) is a non-increasing function, and thus we

have:
Vg(tk) ≤ Vg(0),

1− ÃVg(tk) ≥ 1− ÃVg(0).

Equation (B.4) becomes:

Vg(tn+1) ≤ Vg(0)−D2

n∑
k=1

(1− ÃVg(0))∆t,

Vg(tn+1) ≤ Vg(0)−D2(1− ÃVg(0))(n+ 1)∆t.

Since (n+ 1)∆t = t, we get

(B.5) Vg(t) ≤ Vg(0)−D2(1− ÃVg(0))t.

Differentiating (B.5) w.r.t. t, we get

dVg
dt
≤ −D2(1− ÃVg(0)).
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