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The dispersion and attenuation characteristics of SH waves in piezoelectric
semiconductor multilayered plates with imperfect interfaces are investigated using the
improved Legendre orthogonal polynomial method. The field quantities of each layer
are expanded into individual Legendre polynomials. By incorporating the interface
conditions, the imperfect interface model is integrated into the Legendre polynomials
associated with the imperfect interface layer. This method ultimately converts the
complex wave partial differential equations into a generalized eigenvalue problem,
thereby eliminating the redundant integration operations typical of traditional poly-
nomial methods and allowing for the derivation of complete solutions throughout the
entire wave frequency domain. The solutions are then plotted in three-dimensional
frequency-complex wavenumber space, thus gaining much deeper insight into the na-
ture of modes. The study encompasses cases ranging from a single-layer ZnO plate,
which serves to validate the method, to bilayered and sandwiched piezoelectric semi-
conductor plates with imperfect interfaces. The effects of steady-state carrier concen-
tration, imperfect interface coefficients, and stacking sequences on the phase velocity,
dispersion, and attenuation curves of SH waves are illustrated. The findings can of-
fer a theoretical foundation for controlling the wave characteristics of piezoelectric
semiconductors and for the design of acoustic devices.
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1. Introduction

Piezoelectric semiconductor (PSC) is a type of functional material that
exhibits multi-field coupling effects among mechanics, electricity, and carriers.
It possesses the dual physical properties of piezoelectricity and semiconduc-
tivity, which endows it with broad application prospects in electronic devices
such as high-frequency ultrasonic transducers, resonators, filters, and nanogen-
erators. The development and performance optimization of novel piezoelectric
semiconductor devices require a deep understanding and mastery of the dy-
namic behaviors of piezoelectric semiconductor structures, particularly the char-
acteristics of elastic wave propagation within these structures [1, 2]. Piezoelectric
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semiconductors can convert mechanical vibrations or stress into electrical signals.
Understanding how waves propagate in these materials allows for the design of
more efficient energy harvesting devices.

The layered structure is a commonly used basic configuration in various piezo-
electric and piezoelectric semiconductor devices, and its wave problems have been
extensively studied [3, 4]. Xiao et al. [5] used the Chebyshev spectral element
method to study the dispersion characteristics of guided waves in a multilay-
ered magneto-electro-elastic curved panel, revealing the effects of the magneto-
electric effect, thickness-to-diameter ratio, and stacking sequence on the disper-
sion characteristics. Gao and Zhang [6] investigated guided wave propagation
in anisotropic piezoelectric multilayered structures using the precise integration
method of the Wittrick–Williams algorithm, and they illustrated the effects of
boundary conditions, wave propagation direction, and thickness ratios on the
behavior of guided waves. Using the state-vector approach, Chen et al. [7] in-
vestigated the propagation of harmonic waves in magneto-electro-elastic mul-
tilayered plates composed of PZT-5A, BaTiO3, and CoFe2O4 materials, and
Ezzin et al. [8] investigated the dispersion characteristics of Lamb waves in
piezoelectric-piezomagnetic layered plates. Yang et al. [9] studied extensional
waves in a composite plate of piezoelectric ceramics and semiconductors and
discussed dispersion and dissipation due to semiconduction as well as wave am-
plification by an electric field. Gupta and Bhengra [10] investigated the SH
wave in a multilayered orthotropic magnetoelastic medium using Haskell’s matrix
technique. Using the Legendre polynomial approach, Matar et al. [11] computed
mode shapes of elastic waves in layered piezoelectric-piezomagnetic composites,
and Othmani et al. [12, 13] investigated the characteristics of Lamb waves in
piezoelectric semiconductor multilayered structures made of AlAs and GaAs and
in the GaAs-FGPM-AlAs sandwich plate, considering only piezoelectricity with-
out considering the semiconductor property. In the above studies, the interlayer
interface is routinely assumed to be perfect; that is, displacements and tractions
are continuous across the interface.

However, in practical applications, layered structures may exhibit micro-
cracks or micropores at the interface, resulting in a decrease in mechanical
strength and the formation of imperfect bonding. An imperfect interface refers
to the connection between different material layers that is not perfectly con-
tinuous or bonded and contains certain defects or discontinuities. These defects
may manifest as discontinuities in mechanical displacement, electric potential,
stress, or electric field. Compared with ideal interfaces, imperfect interfaces can-
not fully transmit stress or electric fields and usually require the introduction
of additional interface parameters to describe their mechanical and electrical
behaviors. Such imperfect interfaces are common in real-world applications, es-
pecially in micro/nano-electromechanical systems, where the fabrication process
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may introduce interfacial defects. Imperfect interfaces can weaken the stiffness
and continuity of the interface, leading to changes in wave propagation charac-
teristics. The study of imperfect interfaces in piezoelectric semiconductor layered
structures is crucial for optimizing the performance of devices such as sensors,
transistors, and resonators. For example, imperfect interfaces can affect the re-
flection and transmission characteristics of elastic waves, thereby influencing the
sensitivity and response speed of the devices. Therefore, it is essential to consider
imperfect interfaces in the design and application of such structures.

The wave problem in multilayered structures with imperfect interfaces has
attracted increasing attention from researchers in the past years. The effects
of the interface imperfection on wave propagation in elastic bi-materials have
been investigated in [14–16]. Nie et al. [17, 18] used the partial wave method
to investigate the effect of an imperfect interface on the Lamb and SH waves
in a double-layered plate composed of a piezoelectric layer and a piezomagnetic
layer. Chaudhary et al. [19] studied SH wave propagation in a piezoelectric-
piezomagnetic layered pre-stressed rotating cylindrical tube structure having an
imperfect interface using an analytical technique. Kurt et al. [20] investigated
the dispersion of the Lamb wave in a PZT/metal/PZT sandwich plate consid-
ering the imperfect interface Seema and Singhal [21] investigated the trans-
mission of SH waves in a magnetoelectroelastic solid cylindrical structure with
different types of imperfect interfaces, using the spatially variable quasi-classical
technique. Based on the generalized linear spring model (GLSM), effects of an
imperfect interface on SH waves in various piezoelectric/piezomagnetic layered
structures have been studied [22–24].

For the wave propagation problems in piezoelectric semiconductor structures,
the existing research mainly focused on surface waves and bulk waves, while
research on guided waves is still relatively limited [25–29]. Ben et al. [30] pre-
sented a numerical matrix solution to predict the dispersion curves of SH waves
in a stressed piezoelectric semiconductor plate. By introducing the extended
Stroh formalism, Tian et al. [31] derived the analytical formulation for elas-
tic waves in an anisotropic PSC plate and investigated SH and Lamb waves in
a ZnO PSC plate. Using the power series expansion method, Li et al. [32] in-
vestigated the influence of the surface effect, initial electron concentration, and
plate thickness on the SH waves in a nanoplate based on the Gurtin–Murdoch
surface model. Wei et al. [33] proposed an equivalent imperfect interface model
of PN homojunction/ heterojunction of piezoelectric semiconductors and investi-
gated the energy flux of the reflected and transmitted waves in multifields. Most
of the above studies are about single-layered PSC plates or multilayered PSC
plates with perfect interfaces. Studies on guided waves in multilayered plates
considering the effect of an imperfect interface are few, which motivates the
present study.
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The primary contribution of this study lies in the application of an improved
Legendre polynomial expansion method to model SH waves in multilayered PSC
plates with considering interfacial imperfection. By integrating the Legendre
polynomial approach with the imperfect interface conditions, the field variables
associated with generalized displacements and tractions at the top and bottom
interfaces of each layer are derived. The governing partial differential equations
for the acoustic field are transformed into a generalized matrix eigenvalue prob-
lem in terms of the circular frequency ω, enabling the determination of the com-
plete dispersion spectrum. Numerical examples are provided to demonstrate the
influences of interface coefficients and stacking sequence on the phase velocity
dispersion and attenuation behavior of SH waves in bilayered PSC plates com-
posed of ZnO and GaN. These results provide valuable theoretical insights for
controlling wave propagation in piezoelectric semiconductors and for the design
of advanced acoustic devices.

2. Mathematical model of the problem

2.1. Basic formulation

Consider an n-type multilayered piezoelectric semiconductor plate with an
imperfect interface, as shown in Fig 1. It should be noted that in p-type piezo-
electric semiconductors, holes are the primary charge carriers, whereas in n-type
piezoelectric semiconductors, free electrons are the primary charge carriers.
Introducing a Cartesian coordinate system in such a way that the x-axis is in the
direction of SH wave propagation, and the y-axis is in the polarization direction.
Assuming N layers, each layer has a thickness of h1, h2, . . . , hJ , and the total
thickness of h, h = h1 + h2 + . . .+ hN .
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Fig. 1. Schematic diagram of a piezoelectric semiconductor multilayered plate.
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The constitutive equations for a piezoelectric semiconductor structure are [26]:

σij = cijmlSml − emijEm,(2.1a)
Di = eiklSkl + εikEk,(2.1b)
Ii = qnsµijEj + qnµijĒP − qdijn,j .(2.1c)

The relationship between strain and displacement, as well as the relationship
between electric field strength and potential, are:

(2.2) Sij = 0.5(ui,j + uj,i), Ek = −∂ϕ/∂k.

The governing equations of a PSC structure consist of Newton’s law, Gauss’s
law of electrostatics, and conservation of charge. In the absence of body forces
and free charges, they are given [31],

(2.3) σij,j = ρüj , Di,i = qn, qṅ+ Ii,i = 0

in Eqs. (2.1)–(2.3), σij , Di, and Ii denote, respectively, stresses tensor, electric
displacement vector, and electric current density vector. ns denotes the steady
state carrier concentration, cijkl, ekij , εik, µij , and dij denote the elastic constant
tensor, piezoelectric coefficient tensor, dielectric constant tensor, carrier mobil-
ity, and diffusion constant tensor, respectively. Here the Einstein summation
convention is used, where i, j, k, l, p = 1, 2, 3, correspond to x, y, and z, respec-
tively, with contracted subscripts (11→1, 22→2, 33→3, 23→4, 13→5, 12→6).
n, ϕ, Skl, Ek, and Ēp represent the perturbation carrier concentration, electric
potential, strain vector, electric field vector, and bias electric field vector, respec-
tively; q is the elementary charge constant, and q = 1.602×10−19 C; “ ′” indicates
the partial derivative of the corresponding coordinate, “.” and “..” indicate the
first-order and the second-order partial differentiations with respect to time t,
respectively; the repeated index in the subscript represents the sum of the cor-
responding coordinates.

For traction-free and electrical open-circuit boundary conditions, we have [28],

(2.4) σzz = σzx = σzy = 0, Dz = 0, Iz = 0, at z = 0 and z = h.

For the convenience of handling boundary conditions, a rectangular window
function π(z), is introduced:

(2.5) π0,hN (z) =

{
1, 0 ≤ z ≤ hN ,
0, else.
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For layered structures, the material parameters of the n-th can be expressed
as [34]:

(2.6)

cij =

N∑
n=1

c
(n)
ij πhn−1,hn(z), eij =

N∑
n=1

e
(n)
ij πhn−1,hn(z),

εij =

N∑
n=1

ε
(n)
ij πhn−1,hn(z), µij =

N∑
n=1

µ
(n)
ij πhn−1,hn(z),

dij =

N∑
n=1

d
(n)
ij πhn−1,hn(z).

For the SH wave, the displacement, electric potential, and perturbation car-
rier concentration are assumed to be of the form:

(2.7) {uy, ϕ, n}{x, z, t} = {V (z), X(z), Y (z)} exp(ikx− iωt),

where k and ω denote respectively the wavenumber and the angular frequency;
i is the imaginary unit. V (z), X(z), and Y (z) denote, respectively, amplitudes
of the displacement, the electric potential, and the perturbation of the carrier
density.

Substituting Eqs. (2.1), (2.2), (2.6), and (2.7) into Eq. (2.3) yields:

(−c44k
2V (z)− e15k

2X(z) + c44V
′′(z) + e15X

′′(z))π(z)(2.8a)

+ π′(z)(c44V
′(z) + e15X

′(z)) = −ρω2V (z),

(−e15k
2V (z) + ε11k

2X(z) + e15V
′′(z)− ε11X

′′(z))π(z)(2.8b)
+ π′(z)(e15V

′(z)− ε11X
′(z)) = qY (z),

(−µ11k
2nsX(z)− d11k

2Y (z)− iµ11kE1Y (z) + µ11nsX
′′(z)(2.8c)

+ d11Y
′′(z)− µ11E3Y

′(z))π(z) + π′(z)(µ11nsX
′(z)

+ d11Y
′(z)− µ11E3Y (z)) = −iωY (z).

For the imperfect interface case, it is necessary to satisfy the generalized
stress continuity (the stress, electric displacement, and electric current) and gen-
eralized displacement (the displacement, electric potential, and carrier density)
discontinuity. Namely, at the imperfect interface z = hJ , the interface conditions
are [35]:

σ(J)
zy (x, hJ) = σ(J+1)

zy (x, hJ), u(J+1)
y (x, hJ)−u(J)

y (x, hJ) = α1σzy(x, hJ),(2.9a)

D(J)
z (x, hJ) = D(J+1)

z (x, hJ), ϕ(J+1)(x, hJ)−ϕ(J)(x, hJ) = −α2Dz(x, hJ),(2.9b)

I(J)
z (x, hJ) = I(J+1)

z (x, hJ), n(J+1)(x, hJ)−n(J)(x, hJ) = −α3Iz(x, hJ),(2.9c)
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where α1, α2, and α3 denote the interface parameters characterizing the interfa-
cial imperfection related to mechanical displacement, electric displacement and
potential, and carrier density, with units of m3/N, Vm2/C, and s/mC, respec-
tively. These parameters describe the degree of the interfacial bonding. When αi
is zero, the general interface is reduced to a perfect one. As increasing αi, the
bonding quality becomes poorer. When αi approaches infinity, it indicates a com-
plete stratification.

2.2. Solution of the problem

To satisfy the generalized displacement discontinuity conditions, the field
quantities of each layer are expanded into individual Legendre polynomials. By
combining these with Eq. (2.9), the imperfect interface model is incorporated
into the Legendre polynomials associated with the imperfect interface layer. The
field quantities of each layer can then be expressed as follows.

For the first layer:

(2.10a)

V (1)(z) =
∞∑
m=0

p
(1)
m,1Q

(1)
m (z), X(1)(z) =

∞∑
m=0

p
(1)
m,2Q

(1)
m (z),

Y (1)(z) =
∞∑
m=0

p
(1)
m,3Q

(1)
m (z),

where Q(1)
m (z) =

√
2m+1
h1

Pm
(

2z
h1
− 1
)
, with Pm being the m-th Legendre polyno-

mial.
For the second layer:

(2.10b)

V (2)(z) = V (1)(h1) + α1c
(1)
44 V

(1)′(z → h1)

+ α1e
(1)
15 X

(1)′(z → h1) + (z − h1)

∞∑
m=0

p
(2)
m,1Q

(2)
m (z),

X(2)(z) = (z/h1)2X(1)(h1)− α2e
(1)
15 V

(1)′(z → h1)

+ α2ε
(1)
11 X

(1)′(z → h1) + (z − h1)

∞∑
m=0

p
(2)
m,2Q

(2)
m (z),

Y 2(z) = (z/h1)2Y (1)(h1) + qnsα3µ
(1)
11 X

(1)′(z → hJ)

+ qα3d
(1)
11 Y

(1)′(z → hJ) + (z − h1)

∞∑
m=0

p
(2)
m,3Q

(2
m)(z),

where

Q(2)
m (z) =

√
2m+ 1

h2 − h1
Pm

(
2

h2 − h1
z − h2 + h1

h2 − h1

)
.
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For layer (J + 1):

(2.10c)

V (J+1)(z) = V (J)(hJ) + α1C
(J)
44 V

(J)′(z → hJ)

+ α1e
(J)
15 X

(J)′(z → hJ) + (z − hJ)

∞∑
m=0

p
(J+1)
m,1 Q(J+1)

m (z),

X(J+1)(z) = (z/hJ)2X(J)(hJ)− α2e
(J)
15 V

(J)′(z → h1)

+ α2ε
(J)
11 X

(J)′(z → h1) + (z − hJ)

∞∑
m=0

p
(J+1)
m,2 Q(J+1)

m (z),

Y (J+1)(z) = (z/hJ)2Y (J)(hJ) + qnsα3µ
(J)
11 X

(J)′(z → hJ)

+ qα3d
(J)
11 Y

(J)′(z → hJ) + (z − hJ)

∞∑
m=0

p
(J+1)
m,3 Q(J+1)

m (z),

where

Q(J+1)
m (z) =

√
2m+ 1

hJ+1 − hJ
Pm

(
2

hJ+1 − hJ
z − hJ+1 + hJ

hJ+1 − hJ

)
,

where p(J)
m,n denotes the undermined polynomial coefficients of them-th Legendre

polynomial of the n-th field quantity, and the superscript (J) represents the J-th
layer. When m reaches a finite value M , the polynomial converges, and high-
order terms can be ignored.

Substituting Eqs. (2.10) into Eqs. (2.8), multiplying both sides of the result-
ing equations by Q(1)

l (z), Q(2)
l (z), . . . , Q(N)

l (z), with l from 0 to M , integrating
over z from 0 to hN , and using the orthonormality of the Legendre polynomial,
and then rearranging the terms in the matrix equation so that the k dependence
of the different terms becomes more apparent, leads to the following expression:

(2.11)

k2

 (J)Al,m11
(J)Al,m12

(J)Al,m13
(J)Al,m21

(J)Al,m22
(J)Al,m23

(J)Al,m31
(J)Al,m32

(J)Al,m33


 p

(J)
m,1

p
(J)
m,2

p
(J)
m,3

+ k

 (J)Bl,m
11

(J)Bl,m
12

(J)Bl,m
13

(J)Bl,m
21

(J)Bl,m
22

(J)Bl,m
23

(J)Bl,m
31

(J)Bl,m
32

(J)Bl,m
33


 p

(J)
m,1

p
(J)
m,2

p
(J)
m,3



+

 (J)C l,m11
(J)C l,m12

(J)C l,m13
(J)C l,m21

(J)C l,m22
(J)C l,m23

(J)C l,m31
(J)C l,m32

(J)C l,m33


 p

(J)
m,1

p
(J)
m,2

p
(J)
m,3

 =

 (J)Dl,m
11 0 0

0 (J)Dl,m
22 0

0 0 (J)Dl,m
33


 p

(J)
m,1

p
(J)
m,2

p
(J)
m,3

.

Equation (2.11) can also be abbreviated as:

(2.12) k2AP + kBP +CP = DP ,



Characteristics of SH waves in multilayered piezoelectric. . . 363

where A, B , C , and D are all 3 (M + 1) order square matrices, and P =

[p
(J)
m,1, p

(J)
m,2, p

(J)
m,3]T. The non-zero elements in the matrix are given in the ap-

pendix.
It should be pointed out that k is purely real for elastic materials, therefore

it is very efficient to solve the eigenvalues ω2 by scanning specific k, as adopted
in [36]. However, for piezoelectric semiconductor materials, k is complex, and the
method is ineffective due to the presence of multivariate search. To deal with
this problem, we develop a new solution procedure to transform the quadratic
eigenvalue problem of Eq. (2.12) into a typical generalized eigenvalue problem
in complex wavenumber k, based on a mathematical technique known as the
Linear Companion Matrix Method.

Introducing a new vector H , H = k · P , and combining Eq. (2.12), gives

(2.13)
[

Z I
A−1(D −C) Z

]
·R = k ·R,

where I is the identity matrix, Z is a zero matrix. R = [P H]T.
Consequently, the solution of Eq. (2.13) can obtain the complex wave-

number k(ω) eigenvalues and the field profile eigenvectors. Defining
k = Re(k) + Im(k), Re(k) and Im(k) denote respectively the real and imagi-
nary parts of the wavenumber k, representing the propagation and attenuation
of the wave. The phase velocity can be calculated by Vp = ω/Re(k). It should
be clear that the calculation process involves different Legendre polynomials
and their derivatives in each layer of the integration kernel function, resulting
in a large number of numerical integration calculations, which are very time-
consuming (sometimes several hours) to solve. To overcome these shortcomings,
an analytical integration Legendre polynomial method is presented based on
the orthogonal completeness and recursion of Legendre polynomials, which uses
analytical integration instead of numerical integration to effectively reduce in-
tegration calculation time. There are five integral forms involved in calculations
as follows:

(2.14)

I1 =

1∫
−1

Pn(t)Pm(t) dt, I2 =

1∫
−1

Pn(t)
d

dt
Pm(t) dt,

I3 =

1∫
−1

Pn(t)
d2

dt2
Pm(t) dt, I4 =

1∫
−1

Pn(t)Pm(t)
d

dt
[h(t+1)−h(t−1)] dt,

I5 =

1∫
−1

Pn(t)
d

dt
Pm(t)

d

dt
[h(t+1)−h(t−1)] dt.
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Based on the completeness and recursion of Legendre polynomials, the ana-
lytical expression is derived as follows:

I1 =


bm/2c∑
s=0

(−1)s
(2m− 2s)!

2ms!(m− s)!(m− 2s)!

2n+1(n+ 2p)!(n+ p)!

p!(2n+ 2p+ 1)!
,

m > n, mod(m− n, 2) = 0, m− 2s = n+ 2p,

0, else,

(2.15)

I2 =


bm/2c∑
s=0

(−1)s
(2m− 2s)!

2ms!(m− s)!(m− 2s)!

2n+1(n+ 2p)!(n+ p)!

p!(2n+ 2p)!
,

m− 1 ≥ n, mod(m− n− 1, 2) = 0, m− 2s− 1 = n+ 2p,

0, else,

(2.16)

I3 =


bm/2c∑
s=0

(−1)s
(2m− 2s)!

2ms!(m− s)!(m− 2s)!

2n+1(n+ 2p)!(n+ p)!

p!(2n+ 2p− 1)!
,

m− 2 ≥ n, mod(m− n− 2, 2) = 0, m− 2s− 2 = n+ 2p,

0, else.

(2.17)

By utilizing the properties of the Heaviside function h(t), I4 and I5 can be
obtained:

I4 = Pn(−1)Pm(−1)− Pn(1)Pm(1),(2.18)

I5 = Pn(−1)

[
d

dt
Pm(t)

]
t=−1

− Pn(1)

[
d

dt
Pm(t)

]
t=1

.(2.19)

3. Numerical results and discussion

Based on the above derivation, a computer program in terms of the Legendre
polynomial has been written to calculate the dispersion of SH waves in ZnO/GaN
piezoelectric semiconductor multilayered plates with imperfect interfaces. The
material parameters from [31, 37] are given in Table 1.

3.1. Verification of the method

To verify the correctness of the presented method, we first calculate the
phase velocity dispersion curves of the SH wave in a twolayered PSC plate with
interface coefficients of 0, i.e., degenerating into an ideal interface. Since both
the upper and lower layers are ZnO, this structure is equivalent to a single-layer
ZnO plate. The dimensionless wavenumber is defined as kh and the phase velocity
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Table 1. Material parameters.

Materials c11 c13 c33 c44 e15 e31 e33

ZnO 210 105 211 43 −0.48 −0.57 1.32
GaN 379 107 380 98 −0.33 −0.46 0.77

Materials ε11 ε33 µ11 µ33 d11 d33 ρ

ZnO 7.61 8.85 1 1 0.026 0.026 5700
GaN 8.41 9.12 6.53 9.82 0.1699 0.2553 6095

Units: cij [GPa], eij [C/m2], εij [×10−11 F/m], µij [m2/V], dij [m2/s],
ρ [kg/m3].

Re(c) = ω/Re(k), respectively. The thicknesses of the upper and lower layers are
equal, the total thickness h is set to 1 mm, 2 mm, 3 mm, and 4 mm, respectively;
ns is taken as 2×1015 m−3, andM is set to 16. The material parameters are listed
in Table 1. Figure 2 shows the phase velocity dispersion curves obtained using
the improved Legendre orthogonal polynomial method. Its excellent agreement
with those shown in the original paper by Tian et al. [31] was checked by the
authors and no difference was found between the two sets. Therefore, the results
from Tian et al. are not reproduced here but can be found in [31]. This confirms
the accuracy and reliability of the proposed method.

h = 1mm
h = 0.1mm

h = 3mm
h = 5mm

h = 1mm
h = 0.1mm

h = 3mm
h = 5mm

) [
m

/s
]

Fig. 2. Phase velocity dispersion curves of SH wave in ZnO plates.

3.2. SH waves in a ZnO plate

The presented method can calculate the complete three-dimensional (3D)
spectrum. The three-dimensional spectrum of the SH wave, as well as the two-
dimensional dispersion and attenuation curves, are calculated for a ZnO plate
with h = 3 mm, ns = 1015 m−3, as depicted in Figs. 3a and 3b. The dimen-
sionless frequency is Ω = ωh

√
c11/ρ. For comparison purposes, only the first
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several modes are plotted Figs. 3c and 3d are the dispersion and attenuation
curves for ns = 1015 m−3. It can be observed from Figs. 3c and 3d that each of
these modes has no cutoff frequency and can propagate in the whole frequency
domain, which is different from the piezoelectric and pure elastic plates. But for
ns = 1026 m−3, the SH1 mode has a cutoff frequency (as marked by the circle in
Fig. 3a), indicating that the modulation of wave characteristics can be achieved
by changing ns.
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Fig. 3. SH waves in ZnO plates with different ns: a) and b) are the 3D and 2D spectrum for
ns = 1026 m−3, and c) and d) are the dispersion and attenuation for ns = 1015 m−3.

Further calculations are conducted on k for different ns at Ω = 5, and the re-
lationships between ns and Re(kh), ns and Im(kh) are obtained, as depicted
in Fig. 4. When ns is less than the critical value of 1014.5 m−3 or greater
than 1016.5 m−3, k tends towards a constant value; that is, the wave speed
no longer changes. The attenuation is also very small. For a ZnO piezoelec-
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Fig. 4. The relationship curves when Ω = 5, a) ns vs Re(kh), b) ns vs Im(kh).

tric plate (q, µij and dij are 0), the phase velocity of SH0 mode calculated
by Vp =

√
c44 + e2

15/ε11/ρ is 2841.66 m/s. For a ZnO elastic plate (q, eij , εij ,
µij , and dij are 0) the corresponding phase velocity is 2746.61 m/s. The re-
sulting phase velocities of the SH0 mode for ZnO PSC plates with different ns,
ns = 1026 m−3 and ns = 106 m−3, are respectively 2841.66 m/s and 2746.61 m/s,
as shown in Fig. 5. This indicates that when ns is below a certain critical value,
the PSC plate behaves like a piezoelectric plate, devoid of the semiconductor
effect. When ns exceeds a certain critical value, the PSC plate behaves like
an elastic plate, free of both piezoelectric and semiconductor effects. Therefore,
when designing PSC structures with larger wave amplitudes, it is necessary to
determine ns and avoid the critical value.

a) b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1
SH2

X 2.78759
Y 2841.66
X 2.78759
Y 2841.66

X 0.948965
Y 2841.66
X 0.948965
Y 2841.66

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

VV pp
 [

   
   

  m
/s]

SH0

SH1
SH2

X 2.78759
Y 2841.66
X 2.78759
Y 2841.66

X 0.948965
Y 2841.66
X 0.948965
Y 2841.66

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1

SH2

X 2.50586
Y 2746.61
X 2.50586
Y 2746.61

X 0.785862
Y 2746.61
X 0.785862
Y 2746.61

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1

SH2

X 2.50586
Y 2746.61

X 0.785862
Y 2746.61

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1

SH2

X 2.50586
Y 2746.61

X 0.785862
Y 2746.61

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1

SH2

X 2.50586
Y 2746.61
X 2.50586
Y 2746.61

X 0.785862
Y 2746.61
X 0.785862
Y 2746.61

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1

SH2

X 2.50586
Y 2746.61

X 0.785862
Y 2746.61

Re(kh)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1000
2000
3000
4000
5000
6000
7000
8000
9000

SH0

SH1

SH2

X 2.50586
Y 2746.61

X 0.785862
Y 2746.61

Re(kh)

V  p 
 [m

/s
] 

Fig. 5. Phase velocity curves for different ns, a) ns = 1026 m−3, b) ns = 106 m−3.
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Fig. 6. Distributions of displacement and stress, at Re(kh) = 0.3, a) SH0 mode, b) SH1
mode, and c) SH2 mode.
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Fig. 7. Distributions of displacement and stress, at Re(kh) = 5, a) SH0 mode, b) SH1 mode,
c) SH2 mode.

In addition, the distributions of displacement and stress at specific wavenum-
bers are analyzed to illustrate the wave propagation characteristics of SH waves.
They can be easily obtained by substituting the eigenvectors into Eqs. (2.7)
with the Legendre polynomial. Figures 6 and 7 respectively show the normal-
ized displacement uy and the normalized stress σzy along the thickness direction
and wave propagation direction for the first three modes at Re(kh) = 0.3 and
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Re(kh) = 5. As seen in Figs. 6 and 7, for the SH0 mode, uy remains constant
along the thickness direction, and σzy is zero. For the SH1 and SH2 modes, the
distributions of the displacement and stress are antisymmetric and symmetric,
respectively. The attenuation of SH waves is more significant at Re(kh) = 0.3
than at Re(kh) = 5, which is due to the larger ratio of Im(kh)/Re(kh) in the
former case. Additionally, the stress on the top and bottom surfaces is zero,
consistent with the preset free boundary conditions. This further confirms the
correctness of the method.

3.3. Effect of the imperfect interface on SH waves in ZnO/GaN bilayered plates

To illustrate the effect of different interface coefficients on SH waves, the
wavenumbers of the first three modes at Ω = 5 for a ZnO/GaN bilayered
plate with h1 = h2 = 1.5 mm, ns = 1016 m−3, Ē1 = 104 N/C, and Ē3 = 0
are calculated, as listed in Table 2. The dimensionless interface parameters are
γ1 = c11α1/h, γ2 = −ε11α2/h, and γ3 = −d11α3/h. From Table 2, we can ob-
serve that the effect of γ1 is significant, the effect of γ2 is small, and γ3 has
almost no effect. As γ1 increases, Re(kh) of the first three modes increases. The
subsequent research will mainly focus on the effect of γ1.

Table 2. The wavenumbers of the first three modes at Ω = 5.

Interface coefficients
SH0 SH1 SH2

Re(kh) Im(kh) Re(kh) Im(kh) Re(kh) Im(kh)

γ1 (γ2 = γ3 = 0)
0 10.3102 0.0722 6.3729 0.0571 7.8525 0.0628
1 10.4677 0.0723 7.1703 0.0871 8.079 0.0329
10 10.6546 0.0725 7.4846 0.0926 8.5773 0.0208

γ2 (γ1 = γ3 = 0)
0 10.3102 0.0722 6.3729 0.0571 7.8525 0.0628
1 10.3088 0.0721 6.3694 0.0500 7.8406 0.0661
10 10.3091 0.0721 6.3702 0.0508 7.8428 0.0646

γ3 (γ1 = γ2 = 0)
0 10.3102 0.0722 6.3729 0.0571 7.8525 0.0628
1 10.3102 0.0722 6.3729 0.0571 7.8525 0.0628
10 10.3102 0.0722 6.3729 0.0571 7.8525 0.0628

Figure 8 illustrates the dispersion and attenuation of the first three modes
of ZnO/GaN bilayered plates with varying γ1(γ2 = γ3 = 0). It can be noticed
that the effect of γ1 on different modes varies. Re(kh) for each mode increases
with increasing γ1. The impact of γ1 on the SH0 mode is relatively small and
regular, whereas its effect on the SH1 and SH2 modes is significant. For example,
the Re(kh) for the SH2 mode is 0.24, 2.44, and 3.98 at Ω = 3.5, for γ1 values
of 0, 1, and 10 respectively. The Im(kh) for the SH1 mode decreases markedly
with increasing γ1. For example, the Im(kh) for the SH1 mode is 2.98, 2.26 and
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Fig. 8. The influence of γ1 on dispersion, a) SH0 mode, b) SH1 mode, c) SH2 mode.

0.58 at Ω = 0.5, for γ1 values of 0, 1, and 10, respectively. In contrast to the
SH1 mode, the influence of γ1 on the Im(kh) of the SH2 mode is minimal in
the low-frequency region but becomes increasingly significant as the frequency
increases. This behavior differs from its effect on the SH1 mode.

Figure 9 displays the phase velocity of the first three SHwavemodes for various
values of γ1. It can be observed that the phase velocity decreases as γ1 increases.
For example, when Re(kh) = 3 and γ1 takes 0, 1, and 10, the phase velocities of
the SH0 mode are 3308 m/s, 3191 m/s, and 2899 m/s, respectively, and those
of the SH1 mode are 4819 m/s, 4494 m/s, and 4103 m/s, respectively.
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Fig. 9. The influence of γ1 on phase velocity, a) SH0 mode, b) SH1 mode, c) SH2 mode.

3.4. SH waves in sandwich PSC plates with imperfect interfaces

Furthermore, the SH wave in PSC sandwich plates composed of ZnO and
GaN with imperfect interfaces is investigated. The influence of γ1 and stacking
sequence on dispersion curves is illustrated. For convenience, ZnO and GaN are
respectively represented by the letters Z and G. Consider two types of sandwich
plates, Z/G/Z and G/Z/G, with h1 = h2 = h3 = 1 mm, ns = 1016 m−3; γ11

and γ12 represent the interface coefficients between the first and second layers,
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as well as between the second and third layers, respectively. Three interface cases
are considered: (1) γ11 = 1, γ12 = 3, (2) γ11 = γ12 = 2, (3) γ11 = 3, γ12 = 1.

Figure 10 presents the dispersion and attenuation curves for Z/G/Z sandwich
plates with different interface coefficients, while Fig. 11 shows the corresponding
phase velocity curves. From Figs. 10 and 11, it is evident that the interface
coefficients have a relatively small effect on the SH0 mode, but a significant
influence on the SH1 and SH2 modes. The SH1 mode exhibits the highest Im(kh),
and thus the maximum attenuation, in case (3), and the lowest Im(kh) in case (1).
In contrast, the SH2 mode shows the smallest Im(kh) in case (3) and the largest
in case (1). The impact of the interface coefficients on the SH0 and SH2 modes
is similar, with the phase velocity in case (1) being higher than that in case (3).
However, for the SH1 mode, the pattern is reversed, as its phase velocity in
case (1) is lower than in case (3). For instance, when Re(kh) = 2.5, the phase
velocities in the three cases are 3887 m/s, 4127 m/s, and 4480 m/s, respectively.
Additionally, the influence of the interface coefficient decreases with increasing
wavenumber.
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Fig. 10. Dispersion curves for Z/G/Z sandwich plates with different interface coefficients,
a) SH0 mode, b) SH1 mode, c) SH2 mode.
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Fig. 11. Phase velocity for Z/G/Z sandwich plates with different interface coefficients,
a) SH0 mode, b) SH1 mode, c) SH2 mode.
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To illustrate the effect of stacking sequence on SH waves, three types of sand-
wich plates, G/Z/Z, Z/G/Z, and Z/Z/G, are considered, with γ11 = γ12 = 1 and
all other parameters remaining as previously described. Figure 12 shows the dis-
persion and attenuation curves of the first three modes of SH wave in these three
sandwich plates, while Fig. 13 shows the corresponding phase velocity curves.
Despite having the same material volume content, the dispersion and attenua-
tion curves vary significantly among the three cases, indicating that the stacking
sequence plays a crucial role in the behavior of SH waves. For the SH0 and SH2
modes, Re(kh) for the G/Z/Z plate is notably greater than that for the other two
plates, which corresponds to a lower phase velocity. The difference in Re(kh) for
the SH0 mode between the Z/G/Z and Z/Z/G plates is relatively small. For the
SH0 mode, the difference in Im(kh) becomes more pronounced with increasing
frequency in the three cases. At a specified frequency, the Z/G/Z plate exhibits
the smallest Im(kh), whereas the G/Z/Z plate shows the largest. For the SH1
mode, the difference in Re(kh) between the Z/G/Z and Z/Z/G plates is rela-
tively small and their phase velocities are very close, whereas the Re(kh) for
the G/Z/Z plate is significantly greater. The difference between them becomes
more pronounced with the increase of wavenumber. Unlike the SH0 and SH2
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b) SH1 mode, c) SH2 mode.
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Fig. 13. Phase velocity for different sandwich plates, a) SH0 mode, b) SH1 mode,
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modes, the Im(kh) for the SH1 mode in the Z/G/Z plate is the biggest among
the three cases, indicating a greater degree of attenuation compared to the other
two plates.

4. Conclusions

The characteristics of SH waves in PSC multilayered plates with imperfect
interfaces are investigated using an improved Legendre orthogonal polynomial
method with analytical integration. Numerical computations and graphical ex-
hibitions are carried out to show the influences of different interface coefficients
and stacking sequences on SH waves in multilayered plates composed of the
ZnO and GaN. Numerical results demonstrate the following conclusions:

(1) Based on the generalized linear spring model, the dispersion and atten-
uation of the SH waves in PSC multilayered plates with imperfect interfaces
are derived using the improved Legendre orthogonal polynomial method. This
method can avoid the tedious iterative search procedure to obtain complete so-
lutions of the dispersion equation.

(2) When the steady-state carrier concentration ns is below a certain critical
value, the behavior of the SH wave in a PSC plate resembles that in a piezoelectric
plate. Conversely, when ns exceeds a certain critical value, the behavior tends
to resemble that of an elastic plate. Adjusting ns allows control of the wave
behavior, making it a key parameter in the design of piezoelectric semiconductor
devices.

(3) The interface coefficient γ1 has the greatest impact on the SH wave, while
γ2 has a relatively small effect, and γ3 has almost no effect. Re(kh) for each
mode increases with the increase of γ1, that is, the phase velocity decreases. The
influence of γ1 becomes more pronounced as the mode order increases.

(4) The stacking sequence significantly affects the SH waves. For SH0 and SH2
modes, the G/Z/Z plate has a lower phase velocity and higher attenuation than
Z/G/Z and Z/Z/G plates. For SH1 mode, its phase velocity is also the smallest.
By optimizing the layering sequence, the attenuation of waves in the material
can be reduced, thereby improving the electromechanical conversion efficiency.

Future research could be extended to consider multi-physics fields involving
temperature, as well as more complex structural configurations such as multi-
layered cylindrical structures and sector-shaped cross-section structures.

Appendix
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