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itivity of the so-called Kelvin moduli. An explicit set of stability conditions for 3D
and 2D crystals of higher symmetry is also included, as well as a Mathematica note-
book that allows mechanical stability analysis for crystals, stress-free and stressed,
of arbitrary symmetry under arbitrary loads.

Key words: mechanical stability, Born’s stability, 2D materials, Kelvin moduli,
orthonormal notation.

Copyright c© 2025 The Author.
Published by IPPT PAN. This is an open access article under the Creative Commons
Attribution License CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The examination of the mechanical stability of crystals is inextri-
cably linked to the seminal paper of Max Born from 1940, in which he analyzed
the stability of unstressed crystals with cubic symmetry [1]. This stability is of-
ten referred to as Born’s stability. Stability conditions for unstressed 3D crystals
of arbitrary symmetry can be found, for example, in [2]. Unfortunately, it uses
non-tensorial Voigt notation and the principal minors of the stiffness tensor,
making these conditions non-objective and thus dependent on the orientation
of the crystal.

In general, checking the mechanical stability boils down to checking the posi-
tive definiteness of a certain fourth-order stiffness tensor, i.e., the non-negativity
of a certain quadratic form for arbitrary values of incremental strains [3]. Histor-
ically, and especially in the field of continuum mechanics, there are at least four
stability criteria for the loaded material, which differ in the choice of appropriate
stiffness tensors [4, 5]. We denote these criteria by: C, where the stiffness tensor
is based on a symmetric Green strain; A, where the stiffness tensor is based on an
asymmetric deformation gradient; Z, as A except that in the absence of rotation
and the incremental stiffness tensor L giving the change in Cauchy stress with
respect to strain. In the ab initio and molecular calculations, only the L and C
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criteria are relevant. Due to the polymorphism of the crystals, the stress-free
configuration is not uniquely determined and only the current configuration is
well defined. These criteria are also the most and least stringent [6]. If the crystal
is in any stress-free configuration, then all of these criteria are equivalent.

The phonon (dynamical)- and mechanical (Born)-stability criteria are, in
a sense, complementary and must be satisfied [7]. There are 3 acoustic branches
of the phonon dispersion relation that start linearly at Γ point. The slope of
the dispersion curve near Γ is the speed of sound. Knowing these slopes, the
point symmetry of the crystal and its density, we can deduce the full stiffness
tensor. The dynamical stability condition requires that all phonon modes have
positive frequencies. Positive slopes of acoustic branches at Γ point do not imply
mechanical stability [8], these conditions are more complex.

When checking mechanical stability, the problem is not that its conditions are
not known, but that they are defined by the fourth-order tensors and cannot be
applied directly, they must be transformed into a useful matrix or lower-order
tensor form. Even in this transformed form, for crystals of lower symmetry,
this verification can be very cumbersome [2]. For the L criterion, only special,
simplest cases are discussed in the literature, i.e., cubic crystals under hydrostatic
pressure loading [9], uniaxial tensile deformation [10] and simple shear [3], re-
spectively. The methodology proposed here does not require the checking of a list
of conditions. Using the spectral decomposition of the fourth-order stiffness ten-
sors mapped to a second-order tensors using orthonormal (Mandel) notation, for
any material symmetry and any loading, amounts to computing Kelvin moduli,
i.e., appropriate eigenvalues. The procedure requires only writing the calculated,
either ab initio or atomistic, elastic constants and components of the stress ten-
sor into the proper form of second-order tensors using orthonormal notation,
and then solving the eigenproblem umerically.

The remainder of this paper is structured as follows: in Section 2 the differ-
ences between Voigt and orthonormal notations are discussed in detail, in Sec-
tion 3 general mechanical stability conditions for stress-free systems of arbitrary
symmetry written in orthonormal notation are discussed and in Section 4 the
above stability conditions for stress-free systems were generalized to deformed
and stressed systems. Additionally in Appendix A representations of the stiff-
ness tensor for stress-free B2 NiAl written in orthonormal notation for three
different orientations are shown, in Appendix B the application of general sta-
bility conditions to the cubic B2 NiAl crystal subjected to biaxial deformation,
tension and compression, is presented. To complete the paper, an explicit set
of stability conditions using both leading principal minors and Kelvin moduli
is given in Appendix C for stress-free 3D systems with standard lattice vectors,
and in Appendix D for 2D systems. Explicit formulas for homogenized isotropic
bulk and shear modulus are given in Appendix E.
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2. Voigt and orthonormal notation

In applied mathematics, physics [2, 11], continuum and computational me-
chanics [12, 13], ab initio and molecular codes [14], where symmetric tensors
appear, it is common practice to use Voigt notation to reduce their order, so
that second-order tensors (strain, stress) are written as vectors and fourth-order
tensors (elasticity) as matrices [15, 16].

The most straightforward method for illustrating this notation is to consider
the case of the generalized Hooke’s law, which describes the linear relationship
between strain and stress tensor:

(2.1) σij = Cijklεkl → σ = Cε,

where σ is the second-order Cauchy stress tensor, C is the fourth-order anisotro-
pic stiffness tensor and ε is the second-order small strain tensor (i, j, k = 1, 2, 3
for 3D and i, j, k = 1, 2 for 2D problems), in accordance with the Einstein sum-
mation convention, repeated indices are to be understood as implicitly summed.

Since σ and ε are symmetric tensors, the following holds (minor symmetry)

(2.2) Cijkl = Cjikl = Cijlk,

and from the thermodynamic requirement of the existence of a strain energy den-
sity function W (ε) (hyperelastic material) [17] additionally holds (major sym-
metry)

(2.3) Cijkl = Cklij ,

and hence the number of independent components of fourth-order Cijkl reduces
to 21 in 3D [18] and to 6 in 2D [19, 20]. The non-tensorial Voigt notation afore-
mentioned employs a 6×6 symmetric matrix in 3D:

(2.4)



σ11
σ22
σ33
σ23
σ13
σ12

 =



C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1112 C2212 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212





ε11
ε22
ε33
2ε23
2ε13
2ε12

,
or

(2.5)



σ̂1
σ̂2
σ̂3
σ̂4
σ̂5
σ̂6

 =



Ĉ11 Ĉ12 Ĉ13 Ĉ14 Ĉ15 Ĉ16

Ĉ12 Ĉ22 Ĉ23 Ĉ24 Ĉ25 Ĉ26

Ĉ13 Ĉ23 Ĉ33 Ĉ34 Ĉ35 Ĉ36

Ĉ14 Ĉ24 Ĉ34 Ĉ44 Ĉ45 Ĉ46

Ĉ15 Ĉ25 Ĉ35 Ĉ45 Ĉ55 Ĉ56

Ĉ16 Ĉ26 Ĉ36 Ĉ46 Ĉ56 Ĉ66





ε̂1
ε̂2
ε̂3
γ̂4
γ̂5
γ̂6

→ σ̂ = Ĉε̂.
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In 2D 3×3 symmetric matrix:

(2.6)

 σ11σ22
σ12

 =

C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

 ε11
ε22
2ε12

,
or

(2.7)

 σ̂1σ̂2
σ̂3

 =

 Ĉ11 Ĉ12 Ĉ13

Ĉ12 Ĉ22 Ĉ23

Ĉ13 Ĉ23 Ĉ33

 ε̂1ε̂2
γ̂3

→ σ̂ = Ĉε̂.

In this notation, the non-diagonal elements of the second-order strain tensor
are doubled and denoted as γ̂J , and have the interpretation of engineering shear
strains, for stresses there is no doubling.

The less popular is an orthonormal, also called Mandel, notation in 3D:
(2.8)

σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

=



C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C1122 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C1133 C2233 C3333

√
2C3323

√
2C3313

√
2C3312√

2C1112

√
2C2212

√
2C3323 2C2323 2C2313 2C2312√

2C1113

√
2C2213

√
2C3313 2C2313 2C1313 2C1312√

2C1112

√
2C2212

√
2C3312 2C2312 2C1312 2C1212





ε11
ε22
ε33√
2ε23√
2ε13√
2ε12

,

or

(2.9)



σ1
σ2
σ3
σ4
σ5
σ6

 =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1
ε2
ε3
ε4
ε5
ε6

→ σ̃ = C̃ε̃.

In 2D:

(2.10)

 σ11
σ22√
2σ12

 =

 C1111 C1122

√
2C1112

C1122 C2222

√
2C2212√

2C1112

√
2C2212 2C1212

 ε11
ε22√
2ε12

,
or

(2.11)

 σ1σ2
σ3

 =

C11 C12 C13

C12 C22 C23

C13 C23 C33

 ε1ε2
ε3

→ σ̃ = C̃ε̃.
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The difference between the Voigt notation and the orthonormal notation is
not only the factor of 2 and its square root, but it is much more fundamental.
In the Voigt notation, the elements of the matrix Ĉ in Eqs. (2.5) and (2.7) are
not the elements of a 2nd-order tensor, while in the orthonormal notation, the
elements of C̃ in Eqs. (2.9) and (2.11) are the elements of a 2nd-order tensor
in six dimensions for 3D and three dimensions for 2D problems. The fourth-
order tensor notation (2.1) and orthonormal notation (2.9, 2.11) are tensorially
equivalent [19, 21]. It is also worth mentioning that in this notation the stiffness
tensor C̃ and the compliance tensor S̃ have the same bases, are collinear (have
the same eigenvectors and the eigenvalues of S̃ are equal to the inverse of the
eigenvalues of C̃). There is also an equivalence of quadratic norms here [22]:

‖σ‖ =
√
σijσij = ‖σ̃‖ =

√
σIσI ,(2.12)

‖ε‖ =
√
εijεij = ‖ε̃‖ =

√
εIεI ,(2.13)

‖C‖ =
√
CijklCijkl = ‖C̃‖ =

√
CIJCIJ .(2.14)

For Voigt notation such equivalence of norms does not occur, see Section 6.

3. Internal stability criterion for stress-free lattice

The case of mechanical stability conditions for an unstressed system is con-
sidered first. These stability conditions are contained here in the requirement
that the local quadratic approximation of the strain energy density function,
W (ε), is always positive, strictly convex:

(3.1) W (εij) =
1

2

∂2W

∂εij∂εkl

∣∣∣∣
ε=0

εijεkl =
1

2
Cijklεijεkl →W (ε) =

1

2
εCε =

1

2
εσ.

The meaning and properties of the quantities used here have already been ex-
plained in Section 2. However, this fourth-order tensor condition cannot be used
directly. It is typically transformed into a matrix condition using Voigt nota-
tion. Then the positivity of the stiffness matrix, which is not a tensor in Voigt
notation, is checked using the condition for positivity of the leading principal
minors [2, 12, 23]. This condition is known as Sylvester’s criterion and is equiv-
alent to checking whether an upper triangular matrix has all positive diagonal
elements after LU decomposition [24]. Still, there are several problems with this
approach, it is not tensorially equivalent to the original problem, it depends
on the choice of the base of the lattice vectors, and for low symmetries it is
cumbersome. This will be clarified after discussing an alternative approach.

For an even-order tensor, the eigenvalue problem is well posed [25, 26], and
the spectral decomposition of stiffness tensors can be equivalently expressed in
both the fourth-order [27] and orthonormal notation:
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(3.2) C =

6(3)∑
I=1

λIεI ⊗ εI ↔ C̃ =

6(3)∑
I=1

λI ε̃I ⊗ ε̃I ,

where λI are called the stiffness, Kelvin moduli [28] of C or C̃, a εI here are the
second-order symmetric eigenstate, eigenstrain tensors of C, and ε̃I are eigen-
state, eigenstrain vectors of C̃ written in orthonormal notation (I = 1, . . . , 6
for 3D (Eqs. (2.8) and (2.9)) and I = 1, . . . , 3 for 2D (Eqs. (2.10) and (2.11))).
The condition of the positivity of the Kelvin moduli is an alternative to the
Sylvester criterion and guarantees the required positivity of the quadratic form
in Eq. (3.1). And this approach, based on the spectral decomposition of the
fourth-order stiffness tensors mapped to second-order tensors using orthonor-
mal notation, and the verification of the positivity of the so-called Kelvin mod-
uli, will be dominant in this study. It is worth making two further points be-
fore moving on to other considerations. First, the previously mentioned condi-
tion of positive slopes of acoustic branches of phonons at Γ point corresponds
to strong ellipticity in mathematical elasticity. This condition does not imply
positivity of the strain energy density function, W (ε) in Eq. (3.1), but the
opposite implication appears [18]. The strong ellipticity condition allows the
existence of a negative bulk modulus B and Poisson’s ratio ν, which is only
limited by the condition /∈

[
1
2 , 1
]
, which seems to be unphysical [29]. Second,

only the case of relaxed ions in the computational cell is considered here, i.e.,
when internal atomic coordinates are relaxed. In the case of clamped ions,
without internal relaxation of the atoms, the mechanical and dynamical sta-
bility cannot be decoupled and the mechanical-phonon coupled system must be
considered [30].

The symmetries of the stiffness tensor will now be discussed. Aspects of sym-
metry are known to be important in studying physical phenomena [11]. The crys-
tal point group symmetry determines the symmetry of physical properties. The
principle of symmetry (Neumann’s Principle) directly states that: “The symme-
try elements of any macroscopic physical property of a crystal must include the
symmetry elements of the point group of the crystal” [31]. Since physical proper-
ties are represented by tensors, tensors for crystals must also have corresponding
symmetries [32]. However, the symmetry classification of linear elastic materials
is not related to crystallography. This is due to the properties of fourth-order Eu-
clidean symmetric tensors (from the linearity of phenomenological Hooke’s law
and the properties of two, three-dimensional Euclidean space) [33]. For 3D linear
hyperelastic materials, there are eight classes of symmetry [34] and four classes
of symmetry for 2D [19, 35]. A classification of all symmetries of anisotropic
elasticity, their relations to crystal systems, point and space groups, the corre-
sponding number of distinct elastic constants and Kelvin moduli is gathered in
Table 1 for 3D materials and Table 2 for 2D materials.
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Table 1. The distinct symmetries of anisotropic elasticity and crystal systems
for 3D materials.

Material
symmetry

Crystal
system

Point
group

Space
group

No. of
independent

elastic
constants

No. of
distinct
Kelvin
moduli

Triclinic Triclinic C1, Ci 1–2 21 6
Monoclinic Monoclinic C2, Cs, C2h 3–15 13 6
Orthotropic Orthorhombic D2, C2v, D2h 16–74 9 6

Tetragonal Tetragonal C4, S4, C4h, D4

C4v, D2d, D4h
75–142 6 5

Trigonal Trigonal C3, S6, D3, C3v, D3d 143–167 6 4
Transverse
isotropy

Hexagonal C6, C3h, C6h, D6

C6v, D3h, D6h
168–194 5 4

Cubic Cubic T, Th, O, Td, Oh 195–230 3 3
Isotropy 2 2

Table 2. The distinct symmetries of anisotropic elasticity and crystal systems
for 2D materials.

Material
symmetry

Crystal
system

Point
group

2D Space
system

No. of
independent

elastic
constants

No. of
distinct
Kelvin
moduli

Anisotropic Oblique C1, C2 p1, p2 6 3

Orthotropic
Rectangular D1, D2 pm, pg, pmm, pmg 4 3
Centered

rectangular
D1, D2 cm, cmm, pgg

Tetragonal Square C4, D4 p4, p4m, p4g 3 3
Isotropy Hexagonal C3, D3, C6, D6 p3, p3m1, p31m, p6, p6m 2 2

The number of distinct elastic constants requires some comment. Firstly,
it is independent of the orientation of the crystallographic axis system only for
isotropy. This is demonstrated in the representation of the stiffness tensor
for NiAl, a crystal with cubic symmetry, in Appendix 6. Depending on the
orientation of the crystal, we have 3 (A.1), 6 (A.2) and 9 (A.3) distinct elas-
tic constants, respectively. As can be seen, the pattern of the stiffness tensor
also changes, but the number of Kelvin moduli remains constant. In addition
to rotating the structure in molecular or ab initio calculations, we do not al-
ways use conventional computational cells. Sometimes it is more convenient to
convert non-orthogonal cells, such as hexagonal or trigonal cells, into orthogo-
nal cells [36]. Secondly, some authors introduce two separate tetragonal and two
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separate trigonal symmetries, differing in the number of distinct elastic constants
[2, 11, 37]. Such a separation is unnecessary. They all have 6 distinct elastic con-
stants when the proper substitution is made [38].

4. Internal stability criterion for deformed and stressed lattice

There are different internal stability criteria encountered in literature based
on various tangent or incremental stiffness tensors [4]. In the present work,
an internal stability criterion with respect to strain increments conjugated to
Cauchy stress is applied [3, 39, 40]. The choice of this criterion is dictated by the
fact that it reproduces well the observed physical instabilities and is among
the two most stringent of the other proposed [6]. Incremental symmetrized tan-
gent modulus L [3] is defined by

Lijkl = Cijkl +
1

2
(σikδjl + σilδjk + σjkδil + σjlδik − σijδkl − σklδij)→ L(4.1)

= C + H,

where C is the fourth-order anisotropic stiffness tensor calculated in the current
(deformed, stressed) configuration chosen as reference configuration (stiffness
tensor C in Eq. (2.1) is calculated in the stress-free configuration), σ is the
second-order Cauchy stress tensor and δ is the Kronecker delta tensor (i, j, k =
1, 2, 3 for 3D and i, j, k = 1, 2 for 2D problems). The tensors C, H and L possess
minor and major symmetry.

The necessary condition of internal stability requires positive definiteness of
the quadratic form

(4.2) Lijklδεijδεkl ≥ 0→ δεLδε ≥ 0,

for all incremental strains ∀δε 6= 0.
Using the orthonormal notation described in more detail in Section 2, we can

map the fourth-order tensors C, H and L in Eq. (4.1) to tensorially equivalent
symmetric tensors of the order two.

In 3D:

L = C + H→ [L̃αβ] = [C̃αβ] + [H̃αβ],(4.3)

[C̃αβ]→



C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C1122 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C1133 C2233 C3333

√
2C3323

√
2C3313

√
2C3312√

2C1112

√
2C2212

√
2C3323 2C2323 2C2313 2C2312√

2C1113

√
2C2213

√
2C3313 2C2313 2C1313 2C1312√

2C1112

√
2C2212

√
2C3312 2C2312 2C1312 2C1212


,(4.4)
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and

(4.5) [H̃αβ]→



σ11
−σ11−σ22

2
−σ11−σ33

2 −σ23√
2

σ13√
2

σ12√
2

−σ11−σ22
2 σ22

−σ22−σ33
2

σ23√
2

−σ13√
2

σ12√
2

−σ11−σ33
2

−σ22−σ33
2 σ33

σ23√
2

σ13√
2

−σ12√
2

−σ23√
2

σ23√
2

σ23√
2

σ22 + σ33 σ12 σ13
σ13√
2

−σ13√
2

σ13√
2

σ12 σ11 + σ33 σ23
σ12√
2

σ12√
2

−σ12√
2

σ13 σ23 σ11 + σ22


,

or

(4.6) [C̃αβ]→



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

,

and

(4.7) [H̃αβ]→



σ1
−σ1−σ2

2
−σ1−σ3

2 −σ4
2

σ5
2

σ6
2−σ1−σ2

2 σ2
−σ2−σ3

2
σ4
2 −σ5

2
σ6
2−σ1−σ3

2
−σ2−σ3

2 σ3
σ4
2

σ5
2 −σ6

2
−σ4

2
σ4
2

σ4
2 σ2 + σ3

σ6√
2

σ5√
2

σ5
2 −σ5

2
σ5
2

σ6√
2

σ1 + σ3
σ4√
2

σ6
2

σ6
2 −σ6

2
σ5√
2

σ4√
2

σ1 + σ2


.

In 2D:

[L̃αβ] = [C̃αβ] + [H̃αβ],(4.8)

[C̃αβ]→

 C1111 C1122

√
2C1112

C1122 C2222

√
2C2212√

2C1112

√
2C2212 2C1212

,(4.9)

and

(4.10) [H̃αβ]→

 σ11
−σ11−σ22

2
σ12√
2

−σ11−σ22
2 σ22

σ12√
2

σ12√
2

σ12√
2

σ11 + σ22

,
or

(4.11) [C̃αβ]→

 C11 C12 C13

C12 C22 C23

C13 C23 C33

,



388 M. Maździarz

and

(4.12) [H̃αβ]→

 σ1
−σ1−σ2

2
σ3
2−σ1−σ2

2 σ2
σ3
2

σ3
2

σ3
2 σ1 + σ2

.
Having already mapped the L̃αβ tensors, we need to determine the Kelvin

moduli, i.e., their eigenvalues, for them. For a 2D problem, Eq. (4.8), this can
be done analytically using the so-called Cardano formulas [41]. For 3D, except
for special cases for the 6×6 tensors, Eq. (4.3), it is necessary to use numerical
procedures using Mathematica [42], Python [43], Julia [44], or similar. The pos-
itivity of all Kelvin moduli guarantees the positive definiteness of the quadratic
form in Eq. (4.2) and, consequently, mechanical stability (the tensors C̃αβ , H̃αβ

are symmetric and hence also L̃αβ , so Kelvin moduli are real).

5. Conclusions

As Ludwig Boltzmann is said to have said “Nothing is more practical than
a good theory”. The present work is somewhat in this spirit and boils down
to a simple recipe for how to algorithmically check the mechanical stability of an
arbitrarily loaded material with arbitrary symmetry. Whether it is a 3D or 2D
material, the stiffness tensor in the current configuration can be calculated ab ini-
tio or atomistically, and if it is not a stress-free configuration, the Cauchy stress
as well. It is important to use the orthonormal notation from Section 2 to repre-
sent the calculated quantities in terms of the corresponding second-order tensors
C̃, H̃ and L̃ from Eqs. (4.3)–(4.12). For the tensors of order two represented in
this way, their eigenvalues, called Kelvin moduli, can be determined numerically.
The positivity of these moduli indicates the mechanical stability of the material,
structure, crystal analyzed.

6. Supplementary material

Mathematica notebook that allows mechanical stability analysis for crystals,
stress-free and stressed, of arbitrary symmetry under arbitrary loads is available
online at Supplementary material [45].

Appendix A. NiAl-Stiffness tensors

Stiffness tensor for stress-free B2 NiAl written in orthonormal notation (2.8)
for crystal orientation X = [100], Y = [010], Z = [001] was taken from the
paper [36], calculated using molecular statics (MS) approach in LAMMPS [14]
and the Embedded Atom Model (EAM) [46].

https://doi.org/10.6084/m9.figshare.29356658
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(A.1) [C̃αβ]→



190.868 142.908 142.908 0. 0. 0.
142.908 190.868 142.908 0. 0. 0.
142.908 142.908 190.868 0. 0. 0.

0. 0. 0. 242.971 0. 0.
0. 0. 0. 0. 242.971 0.
0. 0. 0. 0. 0. 242.971

,

the same stiffness tensor for B2 NiAl but determined for crystal orientation
X = [110] Y = [1-10] Z = [001] (the orthogonal rotation tensor in 6-dimensional
space can be found in [21])

(A.2) [C̃αβ]→



288.374 45.402 142.908 0. 0. 0.
45.402 288.374 142.908 0. 0. 0.
142.908 142.908 190.868 0. 0. 0.

0. 0. 0. 242.971 0. 0.
0. 0. 0. 0. 242.971 0.
0. 0. 0. 0. 0. 47.960

,

and the same stiffness tensor for B2 NiAl but determined for crystal orientation
X = [111] Y = [1-10]Z = [11− 2]

(A.3) [C̃αβ]→



320.876 77.904 77.904 0. 0. 0.
77.904 288.374 110.406 0. 0. −65.004
77.904 110.406 288.374 0. 0. 65.004

0. 0. 0. 177.968 91.929 0.
0. 0. 0. 91.929 112.964 0.
0. −65.004 65.004 0. 0. 112.964

.

Depending on the orientation of the crystal, we have here 3 (A.1), 6 (A.2)
and 9 (A.3) distinct elastic constants, respectively. As can be seen, the pattern
of the stiffness tensor also changes, but the number of Kelvin moduli remains
constant. For all 3 orientations, the Kelvin moduli are identical and are as follows
λi = (476.684, 242.971, 242.971, 242.971, 47.96, 47.96), i = 1, . . . , 6.

Appendix B. NiAl-Stability analysis

Let us consider the application of a homogeneous deformation to a monocrys-
tal, in accordance with the Cauchy–Born rule (hypothesis) [13].

The order of indexes in the symmetric strain and stress tensor is here as
follows: 1→11, 2→22, 3→33, 4→23, 5→13 and 6→12, whereas in LAMMPS [14]
is assumed 1→11, 2→22, 3→33, 4→12, 5→13, 6→23, and in the Cartesian co-
ordinate system, 1 is X, 2 is Y , and 3 is Z.
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Consider a biaxial strain state, that is, one in which the deformation gradient
F can be written in the following form

(B.1) [Fij ]→

α 0 0
0 α 0
0 0 1

,
where α is the stretch ratio, for α > 1 we have tension and for 0 < α < 1
compression. The Lagrangian finite strain tensor, also called the Green strain
tensor is defined as E = 1

2(FTF − I). Linearization of the Green strain tensor
yields the infinitesimal strain tensor ε = 1

2(FT + F − 2I), also called the linear
strain tensor, or the small strain tensor [47].

For the B2 NiAl crystal oriented in the Cartesian coordinate system such
that X = [100] Y = [010] Z = [001] using molecular statics calculations we
are looking for such an α that in the current, deformed configuration C̃αβ in
Eq. (4.4) becomes singular

(B.2) [C̃αβ]→



12.351 12.375 5.225 0. 0. 0.
12.375 12.351 5.225 0. 0. 0.
5.225 5.225 54.415 0. 0. 0.

0. 0. 0. 61.726 0. 0.
0. 0. 0. 0. 61.726 0.
0. 0. 0. 0. 0. 84.722

.

For biaxial tension and α equal to 1.15365, the Kelvin moduli are as follows
λC̃i = (84.722, 61.726, 61.726, 56.1524, 22.989,−0.024), i = 1, . . . , 6 and C̃αβ be-
comes singular.

We perform analogous calculations, but now require that L̃αβ in Eq. (4.3)
becomes singular

(B.3) [C̃αβ]→



1.179 9.579 3.781 0. 0. 0.
9.579 1.179 3.781 0. 0. 0.
3.781 3.781 53.815 0. 0. 0.

0. 0. 0. 59.011 0. 0.
0. 0. 0. 0. 59.011 0.
0. 0. 0. 0. 0. 79.308

.

For α equal to 1.15454, the Kelvin moduli are as follows λC̃i = (79.308, 59.011,
59.011, 54.469, 10.105,−8.400), i = 1, . . . , 6. As it can be seen, C̃αβ alone is also
singular here.

Since this is a deformed crystal, the stresses are not zero and are σ11 = 27.060,
σ22 = 27.060, and σ33 = 20.585 GPa, respectively. For this stress state, the H̃αβ

tensor in Eq. (4.7) is
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(B.4) [H̃αβ]→



27.060 −27.060 −23.823 0. 0. 0.
−27.060 27.060 −23.823 0. 0. 0.
−23.823 −23.823 20.585 0. 0. 0.

0. 0. 0. 47.645 0. 0.
0. 0. 0. 0. 47.645 0.
0. 0. 0. 0. 0. 54.120

,

and the resulting L̃αβ becomes

(B.5) [L̃αβ]→



28.239 −17.481 −20.042 0. 0. 0.
−17.481 28.239 −20.042 0. 0. 0.
−20.042 −20.042 74.400 0. 0. 0.

0. 0. 0. 106.656 0. 0.
0. 0. 0. 0. 106.656 0.
0. 0. 0. 0. 0. 133.427

,

and the Kelvin moduli are as follows λL̃i = (133.427, 106.656, 106.656, 85.193,
45.720,−0.034), i = 1, . . . , 6 and L̃αβ becomes singular. We see that for biax-
ial tension the singularity condition for C̃αβ (α = 1.15365) is somewhat more
stringent than that for L̃αβ (α = 1.15454), while the crystal still remains me-
chanically stable.

Similar to the case of biaxial tension, biaxial compression is now analyzed.
Again, we are looking for such an α that in the current, deformed configuration
C̃αβ in Eq. (4.4) becomes singular

(B.6) [C̃α]→



1137.230 813.821 908.399 0. 0. 0.
813.821 1137.230 908.399 0. 0. 0.
908.399 908.399 845.906 0. 0. 0.

0. 0. 0. 399.541 0. 0.
0. 0. 0. 0. 399.541 0.
0. 0. 0. 0. 0. 1.875

.

For biaxial compression and α equal to 0.7985, the Kelvin moduli are as
follows λC̃i = (2796.950, 399.541, 399.541, 323.411, 1.875, 0.011), i = 1, . . . , 6 and
C̃αβ becomes singular.

We perform analogous calculations, but now require that L̃αβ in Eq. (4.3)
become singular

(B.7) [C̃αβ]→



621.924 280.913 336.130 0. 0. 0.
280.913 621.924 336.130 0. 0. 0.
336.130 336.130 372.138 0. 0. 0.

0. 0. 0. 431.175 0. 0.
0. 0. 0. 0. 431.175 0.
0. 0. 0. 0. 0. 253.649

.
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For α equal to 0.9087, the Kelvin moduli are as follows λC̃i = (1181.890,
431.175, 431.175, 341.011, 253.649, 93.083), i=1, . . . , 6. As can be seen, C̃αβ alone
is not singular here.

Since this is a deformed crystal, the stresses are not zero and are
σ11 = −59.567, σ22 = −59.567, and σ33 = −41.191 GPa, respectively. For this
stress state, the H̃αβ tensor in Eq. (4.7) is

(B.8) [H̃αβ]→



−59.567 59.567 50.379 0. 0. 0.
59.567 −59.567 50.379 0. 0. 0.
50.379 50.379 −41.191 0. 0. 0.

0. 0. 0. −100.758 0. 0.
0. 0. 0. 0. −100.758 0.
0. 0. 0. 0. 0. −119.134

,

and the resulting L̃αβ becomes

(B.9) [L̃αβ]→



562.357 340.480 386.508 0. 0. 0.
340.480 562.357 386.508 0. 0. 0.
386.508 386.508 330.947 0. 0. 0.

0. 0. 0. 330.417 0. 0.
0. 0. 0. 0. 330.417 0.
0. 0. 0. 0. 0. 134.515

,

and the Kelvin moduli are as follows λL̃i = (1233.770, 330.417, 330.417, 221.876,
134.515, 0.011), i = 1, . . . , 6 and L̃αβ becomes singular. We see that for biaxial
compression the singularity condition for L̃αβ (α = 0.9087) is much more strin-
gent than that for C̃αβ (α = 0.7985), while the crystal still remains mechanically
stable. Thus, it is recommended to check the condition on C̃αβ as well as on L̃αβ .
Similar observations were made in [6], where the behavior of a certain isotropic
material subjected to different loads was analyzed.

The Mathematica notebook [42] that allows to analyze the mechanical sta-
bility of crystals, stress-free and stressed, of arbitrary symmetry subjected to
arbitrary loads is available in the supplementary material in Section 6.

Appendix C. 3D-Explicitly written out mechanical
stability conditions

The following representations of stiffness tensor are given with respect to the
symmetry axes, in a canonical base, with standard lattice vectors [37].
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1. Cubic & isotropy → Cubic lattice (Table 1)
(3 & 2 elastic constants; 3 &2 Kelvin moduli)

(C.1) [C̃αβ]→



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

,

(For isotropy C44 = C11 − C12)
C11 − C12 > 0 & C11 + 2C12 > 0 & C44 > 0 or
λI,II,III = C44 > 0 & λIV,V = (C11 − C12) > 0 & λV I = (C11 + 2C12) > 0.

2. Transverse isotropy → Hexagonal lattice (Table 1)
(5 elastic constants; 4 Kelvin moduli)

(C.2) [C̃αβ]→



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11 − C12

,

C11 > |C12| & 2C2
13 > C33(C11 + C12) & C44 > 0 & (C11 − C12) > 0 or

λI,II = C44 > 0 & λIII,IV = (C11 − C12) > 0 &
λV = 1

2(C11 + C22 + C33 −F) > 0 & λV I = 1
2(C11 + C22 + C33 + F) > 0,

where F =
√
C2
11 + 2C11C12 + C2

12 + 8C2
13 − 2C11C33 − 2C12C33 + C2

33.
3. Trigonal → Trigonal lattice (Table 1)

(6 elastic constants; 4 Kelvin moduli)

(C.3) [C̃αβ]→



C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 0 0 0
C14 −C14 0 C44 0 0

0 0 0 0 C44

√
2C14

0 0 0 0
√

2C14 C11 − C12

.

Some authors [2, 11, 37] distinguish a new Trigonal II class with seven, not
six, distinct constants. However, this is not a new class and by a simple
transformation can be reduced to the class above [38].
C11 > |C12| & C44 > 0 & 2C2

13 < C33(C11 +C12) & 2C2
14 < C44(C11−C12) or

λI,II = 1
2(C11−C12 +C44−3) > 0 & λIII ,IV = 1

2(C11−C12 +C44 +3) > 0,
where 3 =

√
C2
11 + 2C11C12 + C2

12 + 8C2
14 − 2C11C44 + 2C12C44 + C2

44, &
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λV = 1
2(C11 + C12 + C33 −F) > 0 & λV I = 1

2(C11 + C12 + C33 + F) > 0,
where F =

√
C2
11 + 2C11C12 + C2

12 + 8C2
13 − 2C11C33 − 2C12C33 + C2

33.
4. Tetragonal → Tetragonal lattice (Table 1)

(6 elastic constants; 5 Kelvin moduli)

(C.4) [C̃αβ]→



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

.
As above some authors [2, 11, 37] identify also a new Tetragonal II class with
seven, not six, distinct constants and again, this is not a new class and can
be simply transformed to the class above [38].
C11 > |C12| & 2C2

13 < C33(C11 + C12) & C44 > 0 & C66 > 0 or
λI,II = C44 > 0 & λIII = (C11 − C12) > 0 & λIV = C66 > 0 &
λV = 1

2(C11 + C22 + C33 −F) > 0 & λV I = 1
2(C11 + C22 + C33 + F) > 0,

where F =
√
C2
11 + 2C11C12 + C2

12 + 8C2
13 − 2C11C33 − 2C12C33 + C2

33.
5. Orthotropic → Orthorhombic lattice (Table 1)

(9 elastic constants; 6 Kelvin moduli)

(C.5) [C̃αβ]→



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

,

C11 > 0 & C11C22 > C2
12 & C11C22C33 + 2C12C13C23 − C11C

2
23 − C22C

2
13

− C33C
2
12 > 0 & C44 > 0 & C55 > 0 & C66 > 0 or λI = C44 > 0 & λII =

C55 > 0 & λIII = C66 > 0 & λIV = RootI |N| > 0 & λV = RootII |N| > 0
& λV I = RootIII |N| > 0, where N = C11C22C33 + 2C12C13C23 − C11C

2
23 −

C22C
2
13 − C33C

2
12 (Roots calculated, e.g., from the Cardano formula [41]).

6. Monoclinic → Monoclinic lattice (Table 1)
(13 elastic constants; 6 Kelvin moduli)

(C.6) [C̃αβ]→



C11 C12 C13 C14 0 0
C12 C22 C23 C24 0 0
C13 C23 C33 C34 0 0
C14 C24 C34 C44 0 0
0 0 0 0 C55 C56

0 0 0 0 C56 C66

,

λi > 0 (all six eigenvalues of C̃αβ).
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7. Triclinic → Triclinic lattice (Table 1)
(21 elastic constants; 6 Kelvin moduli)

(C.7) [C̃αβ]→



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

,

λi > 0 (all six eigenvalues of C̃αβ).

Appendix D. 2D-Explicitly written out mechanical stability conditions

1. Full symmetry (isotropy)→ Hexagonal lattice (Table 2)
(2 elastic constants; 2 Kelvin moduli)

(D.1) [C̃αβ]→

C11 C12 0
C12 C11 0
0 0 C11 − C12

,
C11 > 0 & C11 > |C12| or λI = (C11 + C12) > 0 & λII = (C11 − C12) > 0.

2. Symmetry of a square (tetragonal)→ Square lattice (Table 2)
(3 elastic constants; 3 Kelvin moduli)

(D.2) [C̃αβ]→

C11 C12 0
C12 C11 0
0 0 C33

 ,
C11 > 0 & C33 > 0 & C11 > |C12| or λI = (C11 + C12) > 0 & λII =
(C11 − C12) > 0 & λIII = C33 > 0.

3. Symmetry of a rectangle (orthotropy)→ Rectangular & Centered rectangular
lattice (Table 2)
(4 elastic constants; 3 Kelvin moduli)

(D.3) [C̃αβ]→

C11 C12 0
C12 C22 0
0 0 C33

,
C11 > 0 & C33 > 0 & C11C22 > C2

12 or
λI = 1

2(C11 + C22 +
√

4C2
12 − (C11 − C22)2 ) > 0 & λII = 1

2(C11 + C22 −√
4C2

12 − (C11 − C22)2 ) > 0 & λIII = C33 > 0.
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4. No symmetry (anisotropy)→ Oblique lattice (Table 2)
(6 elastic constants; 3 Kelvin moduli)

(D.4) [C̃αβ]→

C11 C12 C13

C12 C22 C23

C13 C23 C33

,
C11 > 0 & C11C22 > C2

12 & det(C̃αβ) > 0 or λI > 0 & λII > 0 & λIII > 0
(e.g., from the Cardano formula [41]).

If C13 and/or C23 are non-zero, it is difficult to determine if there is no sym-
metry or if the axes are incorrect [19]. To avoid this, the most general condition
for anisotropy (D.4) should be checked.

Appendix E. Homogenized isotropic bulk and shear modulus

In the orthonormal notation regardless of the choice of axes orientation
we get:

Voigt averaging:
bulk modulus

(E.1) BV =
1

9
[(C11 + C22 + C33) + 2(C12 + C13 + C23)];

shear modulus

(E.2) GV =
1

15

[
(C11 +C22 +C33)− (C12 +C13 +C23) +

3

2
(C44 +C55 +C66)

]
.

Reuss averaging:
bulk modulus

(E.3) BR =
1

[(S11 + S22 + S33) + 2(S12 + S13 + S23)]
;

shear modulus

(E.4) GR =
15

[4(S11 + S22 + S33)− 4(S12 + S13 + S23) + 6(S44 + S55 + S66)]
,

where Sij are the elements of the compliance tensor S̃ = C̃−1.
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