Abstract
The Debye sheath that forms at the plasma-wall interface is discussed by means of the one dimensional collisionless kinetic model. We pay special attention to the simplification often adopted both in theoretical descriptions and numerical simulations, treating the wall as a perfect absorber. We show that this assumption, although it greatly simplifies the considerations, is too restrictive from the physical point of view as it leads to an overdetermined problem. This becomes somewhat understandable if we notice that this assumption does not allow for taking into account any properties of the wall.
Keywords:
Debye sheath, collisionless plasma, plasma-wall interactions, collisionless kinetic modelReferences
- K.U. Riemann, Kinetic theory of the plasma sheath transition in a weakly ionized plasma, The Physics of Fluids, 24, 12, 2163–2172, 1981, https://doi.org/10.1063/1.863332.
- J.T. Scheuer, G.A. Emmert, A collisional model of the plasma presheath, The Physics of Fluids, 31, 6, 1748–1756, 1988, https://doi.org/10.1063/1.866663.
- K.U. Riemann, The Bohm criterion and boundary conditions for a multicomponent system, IEEE Transactions on Plasma Science, 23, 4, 709–716, 1995, https://doi.org/10.1109/27.467993.
- K.U. Riemann, Plasma-sheath transition in the kinetic Tonks-Langmuir model, Physics of Plasmas, 13, 6, 063508, 2006, https://doi.org/10.1063/1.2209928.
- F.X. Bronold, R.L. Heinisch, J. Marbach, H. Fehske, Plasma walls beyond the perfect absorber approximation for electrons, IEEE Transactions on Plasma Science, 39, 2, 644–651, 2011, https://doi.org/10.1109/TPS.2010.2094209.
- H.S.W. Massey, E.H.S. Burhop, Electronic and Ionic Impact Phenomena, Clarendon Press, Oxford, 1952.
- H.D. Hagstrum, Low energy de-excitation and neutralization processes near surfaces, Inelastic Ion-Surface Collisions, N.H. Tolk, J.C. Tully, W. Heiland, C.W. White [eds.], pp. 1–25, Elsevier, 1977, https://doi.org/10.1016/b978-0-12-703550-5.50006-6.
- H. Kersten, H. Deutsch, M. Otte, G. Swinkels, G. Kroesen, Micro-disperse par- ticles as probes for plasma surface interaction, Thin Solid Films, 377-378, 530–536, 2000, https://doi.org/10.1016/S0040-6090(00)01439-5.
- M.Y. Ye, S. Takamura, Effect of space-charge limited emission on measurements of plasma potential using emissive probes, Physics of Plasmas, 7, 8, 3457–3463, 2000, https://doi.org/10.1063/1.874210.
- A. Dove, M. Horanyi, X. Wang, M. Piquette, A.R. Poppe, S. Robertson, Experimental study of a photoelectron sheath, Physics of Plasmas, 19, 4, 043502, 2012, https://doi.org/10.1063/1.370170.
- A. Palov, H. Fujii, S. Hiro, Monte Carlo simulation of 1 eV–35 keV electron scattering in teflon, Japanese Journal of Applied Physics, 37, 11R, 6170, 1998, https://doi.org/10.1143/JJAP.37.6170.
- J. Vaughan, A new formula for secondary emission yield, IEEE Transactions on Electron Devices, 36, 9, 1963–1967 1989, https://doi.org/10.1109/16.34278.
- L.A. Schwager, C.K. Birdsall, Collector and source sheaths of a finite ion temperature plasma, Physics of Fluids B: Plasma Physics, 2, 5, 1057–1068, 1990, https://doi.org/10.1063/1.859279.
- L.A. Schwager, Effects of secondary and thermionic electron emission on the collector and source sheaths of a finite ion temperature plasma using kinetic theory and numerical simulation, Physics of Fluids B: Plasma Physics, 5, 2, 631–645, 1993, https://doi.org/10.1063/1.860495.
- R.J. Procassini, C.K. Birdsall, E.C. Morse, A fully kinetic, self-consistent particle simulation model of the collisionless plasma–sheath region, Physics of Fluids B: Plasma Physics, 2, 12, 3191–3205 1990, https://doi.org/10.1063/1.859229.
- T. Gyergyek, J. Kovačič, Saturation of a floating potential of an electron emitting electrode with increased electron emission: A one-dimensional kinetic model and particle-in-cell simulation, Physics of Plasmas, 19, 1, 013506, 2012, https://doi.org/10.1063/1.3677359.
- A. Denig, K. Hara, Kinetic Model of Plasma Sheath Near a Dielectric-Coated, Metal Wall, 37thInternational Electric Propulsion Conference, IEPC-2022-345, 2022.
- K.U. Riemann, Theory of the plasma-sheath transition, Journal of Technical Physics, 41, 1, 89–121, 2000.
- D. Bohm, Minimum ionic kinetic energy for a stable sheath, The Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie, R.K. Wakerling [eds.], pp. 77–86, McGraw Hill, New York, NY, 1949.
- S. Kuhn, Axial equilibria, disruptive effects, and Buneman instability in collisionless single-ended Q-machines, Plasma Physics, 23, 10, 881, 1981, https://doi.org/10.1088/0032-1028/23/10/002.
- N. Sternberg, V. Godyak, The Bohm plasma-sheath model and the Bohm criterion revisited, IEEE Transactions on Plasma Science, 35, 5, 1341–1349, 2007, https://doi.org/10.1109/TPS.2007.905944.
- G.D. Hobbs, J.A. Wesson, Heat flow through a Langmuir sheath in the presence of electron emission, Plasma Physics, 9, 1, 85, 1967, https://doi.org/10.1088/0032-1028/9/1/410.
- V.I. Demidov, S.V. Ratynskaia, K. Rypdal, Electric probes for plasmas: The link between theory and instrument, Review of Scientific Instruments, 73, 10, 3409–3439, 2002, https://doi.org/10.1063/1.1505099.
- D.W. Vance, Surface charging of insulators by ion irradiation, Journal of Applied Physics, 42, 13, 5430–5443 1971, https://doi.org/10.1063/1.1659961.
- H. Winter, Scattering of atoms and ions from insulator surfaces, Progress in Surface Science, 63, 7, 177–247, 2000, https://doi.org/10.1016/S0079-6816(99)00020-9.
- N. Tanaka, F. Ikemoto, I. Yamada, Y. Shimabukuro, M. Kisaki, W.A. Diño, M. Sasao, M. Wada, H. Yamaoka, Positive and negative hydrogen ion reflections of low-energy atomic and molecular hydrogen ion beam from HOPG and Mo surfaces, Review of Scientific Instruments, 91, 1, 013313, 2020, https://doi.org/10.1063/1.5129576.
- R. Behrisch, W. Eckstein, Ion backscattering from solid surfaces, Physics of Plasma-Wall Interactions in Controlled Fusion, D.E. Post, R. Behrisch [eds.], pp. 413–438, Springer US, Boston, MA, 1986, https://doi.org/10.1007/978-1-4757-0067-1_10.
- P.J. Martin, Ion-based methods for optical thin film deposition, Journal of Materials Science, 21, 1, 1–25, 1986, https://doi.org/10.1007/bf01144693.
- J. Cuthbertson, W. Langer, R. Motley, Reflection of low energy plasma ions from metal surfaces, Journal of Nuclear Materials, 196-198, 113–128, 1992, https://doi.org/10.1016/S0022-3115(06)80017-6.
- H.D. Hagstrum, Reflection of noble gas ions at solid surfaces, Physical Review, 123, 758–765, 1961, https://doi.org/10.1103/PhysRev.123.758.
- V. Godyak, N. Sternberg, On the consistency of the collisionless sheath model, Physics of Plasmas, 9, 11, 4427–4430, 2002, https://doi.org/10.1063/1.1513155.
- L. Tonks, I. Langmuir, A general theory of the plasma of an arc, Physical Review, 34, 876–922, 1929, https://doi.org/10.1103/PhysRev.34.876.
- S.A. Self, Exact solution of the collisionless plasma-sheath equation, The Physics of Fluids, 6, 12, 1762–1768, 1963, https://doi.org/10.1063/1.1711020.
- G.A. Emmert, R.M. Wieland, A.T. Mense, J.N. Davidson, Electric sheath and presheath in a collisionless, finite ion temperature plasma, The Physics of Fluids, 23, 4, 803–812, 1980, https://doi.org/10.1063/1.863062.
- A. Lopez Ortega, I.G. Mikellides, 2D fluid-PIC simulations of hall thrusters with self-consistent resolution of the space-charge regions, Plasma, 6, 3, 550–562, 2023, https://doi.org/10.3390/plasma6030038.
- D.D. Tskhakaya, I. Vasileska, L. Kos, N. Jelić, S. Kuhn, Time-dependent kinetic theory of the plasma-wall transition layer in a weakly ionized plasma, Physics of Plasmas, 27, 2, 023517, 2020, https://doi.org/10.1063/1.5123911.
- D.D. Tskhakaya, I. Vasileska, L. Kos, Time-dependent behavior of a Debye sheath: Lengthening and establishment of the stationary state, Physics of Plasmas, 28, 6, 063511, 2021, https://doi.org/10.1063/5.0046308.
- K. Rasek, F.X. Bronold, H. Fehske, Kinetic modeling of the electric double layer at a dielectric plasma-solid interface, Physical Review E, 102, 023206, 2020, https://doi.org/10.1103/PhysRevE.102.023206.
- K. Rasek, F.X. Bronold, H. Fehske, Charge kinetics across a negatively biased semiconducting plasma-solid interface, Physical Review E, 105, 045202, 2022, https://doi.org/10.1103/PhysRevE.105.045202.