Sound attenuation in the diffusive compressible Euler model

Downloads

Authors

  • M.L. Morris independent reseacher, United States

Abstract

We revisit the diffusive compressible Euler (dcE) model of viscous and heat conducting compressible fluid flow, proposed recently by M. Svärd to supersede the Navier–Stokes–Fourier (NSF) equations. Here, we use acoustic measurements in gases and liquids from the literature to demonstrate that the dcE model fails to describe sound wave attenuation in general fluids with physical accuracy. It is shown, for example, that the dcE model underestimates the sound attenuation coefficients of air and water at room temperature by about 13% and 51%, respectively.

Keywords:

sound attenuation in fluids, ultrasonic experiments, alternative fluid dynamics models

References


  1. M. Svärd, Refining the diffusive compressible Euler model, Physica A, 635, 129474, 2024.

  2. M. Svärd, A new Eulerian model for viscous and heat conducting compressible flows, Physica A, 506, 350–375, 2018.

  3. V. Dolejší, M. Svärd, Numerical study of two models for viscous compressible fluid flows, Journal of Computational Physics, 427, 110068, 2021.

  4. M.L. Morris, Analysis of an alternative Navier-Stokes system: attenuation of sound waves, ResearchGate preprint, https://doi.org/10.13140/RG.2.2.29383.01442., 2021.

  5. M.L. Morris, Analysis of an alternative Navier-Stokes system: Rayleigh-Brillouin light scattering, ResearchGate preprint, https://doi.org/10.13140/RG.2.2.32239.92321., 2022.

  6. M.L. Morris, Heat conduction in a new Eulerian flow model, Archives of Mechanics, 76, 1-2, 191–202, 2024.

  7. M. Svärd, K. Munthe, A study of the diffusive properties of a modified compressible Navier–Stokes model, Meccanica, 58, 1083–1097, 2023.

  8. A.B. Bhatia, Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids, Dover, New York, 1967.

  9. M.R. Moldover, J.B. Mehl, M. Greenspan, Gas-filled spherical resonators: theory and experiment, Journal of the Acoustical Society of America, 79, 2, 253–272, 1986.

  10. M.J. Holmes, N.G. Parker, M.J.V. Povey, Temperature dependence of bulk viscosity in water using acoustic spectroscopy, Journal of Physics: Conference Series, 269, 012011, 2011.

  11. Z. Gu, W. Ubachs, Temperature-dependent bulk viscosity of nitrogen gas determined from spontaneous Rayleigh-Brillouin scattering, Optics Letters, 38, 7, 1110–1112, 2013.

  12. M. Greenspan, Propagation of sound in five monatomic gases, Journal of the Acoustical Society of America, 28, 4, 644–648, 1956.

  13. M. Greenspan, Rotational relaxation in nitrogen, oxygen, and air, Journal of the Acoustical Society of America, 31, 2, 155–160, 1959.

  14. G.J. Prangsma, A.H. Alberga, J.J.M. Beenakker, Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300 K, Physica, 64, 278–288, 1973.

  15. R. Schotter, Rarefied gas acoustics in the noble gases, Physics of Fluids, 17, 6, 1163–1168, 1974.

  16. H.B. Callen, Thermodynamics, John Wiley & Sons, New York, London, 1962.

  17. J.L. Hunter, T.J. Welch, C.J. Montrose, Excess absorption in mercury, Journal of the Acoustical Society of America, 35, 10, 1568–1570, 1963.

  18. https://www.engineeringtoolbox.com/nitrogen-d_1421.html., March 28, 2024.

  19. https://www.engineeringtoolbox.com/oxygen-d_1422.html., March 28, 2024.

  20. https://www.engineeringtoolbox.com/dry-air-properties-d_973.html., March 28, 2024.

  21. http://www.cgsnetwork.com/atmossndabsorbcalc.html., March 25, 2024.

  22. https://resource.npl.co.uk/acoustics/techguides/absorption., March 25, 2024.

  23. http://www.kayelaby.npl.co.uk/general_physics/2_4/2_4_1.html., June 15, 2012.

  24. https://www.engineeringtoolbox.com/ethanol-ethyl-alcohol-properties-C2H6O-d_2027.html., March 28, 2024.

  25. https://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html., March 28, 2024.

  26. https://www.engineeringtoolbox.com/benzene-benzol-properties-d_2053.html., March 28, 2024.

  27. E.H. Kennard, Kinetic Theory of Gases With an Introduction to Statistical Mechanics, McGraw-Hill, New York, London, 1938.

  28. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley, New York, 2002.

  29. P.M. Morse, K.U. Ingard, Theoretical Acoustics, Princeton University Press, Princeton, New Jersey, 1986.