Stability analysis of MHD stagnation flow over a permeable heated rotating disk with heat generation/absorption

Downloads

Authors

  • F. Mendil Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), Algeria
  • S. Mamache Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), Algeria
  • F.N. Bouda Université de Bejaia, Faculté de Technologie, Laboratoire de Mécanique, Matériaux et Energétique (L2ME), Algeria

Abstract

The stagnation point flow of an incompressible viscous electrically conducting fluid impacting orthogonally on a heated rotating disk is studied with internal volumetric heat generation/absorption in the presence of a uniform magnetic field. A uniform suction or injection is applied through the surface of the disk. Appropriate similarity transformations are used to reduce the governing differential equations of the problem into a system of nonlinear ordinary differential equations and then solved numerically using the fourth-order Runge–Kutta method. In the second step, the work is oriented towards linear stability analysis by considering infinitesimally small disturbances within the boundary layer. Using normal mode decomposition in the Görtler–Hammerlin framework, the resulting eigenvalue problem is then solved numerically by means of the pseudo-spectral method using Laguerre’s polynomials. As a result, the critical conditions for the onset of thermal instability are described and discussed in detail using multiple configurations. It is found that the presence of a magnetic field and suction/injection act to increase the stability of the basic flow. However, the rotation parameter and the internal heat generation/absorption contribute significantly to destabilizing the basic flow.

Keywords:

stability analysis, boundary layer, rotating disk, MHD flow, heat generation/absorption

References


  1. T. von Kármán, Über laminare und turbulente Reibung [About laminar and turbulent flow], ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1, 4, 233–252, 1921, https://doi.org/10.1002/zamm.19210010401.

  2. D.M. Hannah, Forced flow against a rotating disc, Reports Memoranda Aeronautical Research Council, London, 2772, 1947.

  3. E.M. Sparrow, R.D. Cess, Magnetohydrodynamic flow and heat transfer about a rotating disk, The Journal of Applied Mechanics, 29, 1, 181–187, 1962, https://doi.org/10.1115/1.3636454.

  4. P.D. Ariel, On Computation of MHD Flow Near a Rotating Disk, ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 82, 4, 235–246, 2002, https://doi.org/10.1002/1521-4001(200204)82:4&lt.;235::AID-ZAMM235>3.0.CO;2-L.

  5. H.A. Attia, Homann magnetic flow and heat transfer with uniform suction or injection, Canadian Journal of Physics, 81, 10, 1223–1230, 2003, https://doi.org/10.1139/p03-061.

  6. A. Arikoglu, I. Ozkol, G. Komurgoz, Effect of slip on entropy generation in a single rotating disk in MHD flow, Applied Energy, 85, 12, 1225–1236, 2008, https://doi.org/10.1016/j.apenergy.2008.03.004.

  7. M. Turkyilmazoglu, Three dimensional MHD stagnation flow due to a stretchable rotating disk, International Journal of Heat and Mass Transfer, 55, 23, 6959–6965, 2012, https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.089.

  8. M. Imtiaz, T. Hayat, A. Alsaedi, S. Asghar, Slip flow by a variable thickness rotating disk subject to magnetohydrodynamics, Results in Physics, 7, 503–509, 2017, https://doi.org/10.1016/j.rinp.2016.12.021.

  9. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Radiative flow due to stretchable rotating disk with variable thickness, Results in Physics, 7, 156–165, 2017, https://doi.org/10.1016/j.rinp.2016.12.010.

  10. M. Mustafa, MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model, International Journal of Heat and Mass Transfer, 108, 1910–1916, 2017, https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.064.

  11. T. Hayat, M.I. Khan, A. Alsaedi, M.I. Khan, Joule heating and viscous dissipation in flow of nanomaterial by a rotating disk, International Communication in Heat and Mass Transfer, 89, 190–197, 2017, https://doi.org/10.1016/j.icheatmasstransfer.2017.10.017.

  12. T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Physics of Fluids, 30, 1, 017101, 2018, https://doi.org/10.1063/1.5009611.

  13. M. Rahman, F. Sharif, M. Turkyilmazoglu, M.S. Siddiqui, Unsteady three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated rotating disk with uniform suction, Pramana Journal of Physics, 96, 4, 170, 2022, https://doi.org/10.1007/s12043-022-02404-0.

  14. M.R. Malik, S.P. Wilkinson, S.A. Orszag, Instability and transition in rotating disk flow, AIAA Journal, 19, 9, 1131–1138, 1981, https://doi.org/10.2514/3.7849.

  15. M.R. Malik, The neutral curve for stationary disturbances in rotating-disk flow, Journal of Fluid Mechanics, 164, 275–287, 1986, https://doi.org/10.1017/S0022112086002550.

  16. P. Huerre, P.A. Monkewitz, Local and global instabilities in spatially developing flows, Annual Review of Fluid Mechanics, 22, 1, 473–537, 1990, https://doi.org/10.1146/annurev.fl.22.010190.002353.

  17. R.J. Lingwood, Absolute instability of the boundary layer on a rotating disk, Journal of Fluid Mechanics, 299, 17–33, 1995, https://doi.org/10.1017/S0022112095003405.

  18. Y.Y. Lee, Y.K. Hwang, K.W. Lee, The flow instability over the infinite rotating disk, Journal of Mechanical Science and Technology, 17, 9, 1388–1396, 2003.

  19. M. Turkyilmazoglu, Heat and mass transfer on the mhd fluid flow due to a porous rotating disk with hall current and variable properties, Journal of Heat Transfer, 133, 2, 021701 (6), 2011, https://doi.org/10.1115/1.4002634.

  20. M. Turkyilmazoglu, MHD fluid flow and heat transfer due to a stretching rotating disk, International Journal of Thermal Science, 51, 195–201, 2012, https://doi.org/10.1016/j.ijthermalsci.2011.08.016.

  21. M. Amaouche, D. Boukari, Influence of thermal convection on non-orthogonal stagnation point flow, International Journal of Thermal Science, 42, 3, 303–310, 2003, https://doi.org/10.1016/S1290-0729(02)00031-5.

  22. M. Amaouche, F.N. Bouda, H. Sadat, The onset of thermal instability of a two-dimensional hydromagnetic stagnation point flow, International Journal of Heat and Mass Transfer, 48, 21, 4435–4445, 2005, https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.003.

  23. M. Amaouche, F. Naït-Bouda, H. Sadat, Oblique axisymmetric stagnation flows in magnetohydrodynamics, Physics of Fluids, 19, 11, 114106, 2007, https://doi.org/10.1063/1.2804957.

  24. J.J. Healey, On the relation between the viscous and inviscid absolute instabilities of the rotating-disk boundary layer, Journal of Fluid Mechanics, 511, 179–199, 2004, https://doi.org/10.1017/S0022112004009565.

  25. H.A. Jasmine, J.S.B. Gajjar, Absolute and convective instabilities in the incompressible boundary layer on a rotating disk with temperature-dependent viscosity, International Journal of Heat and Mass Transfer, 48, 5, 1022–1037, 2005, https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.036.

  26. M. Turkyilmazoglu, N. Uygun, Compressible modes of the rotating-disk boundary-layer flow leading to absolute instability, Studies in Applied Mathematics, 115, 1, 120, 2005, https://doi.org/10.1111/j.1467-9590.2005.01549.

  27. E. Appelquist, P. Schlatter, P.H. Alfredsson, R.J. Lingwood, Investigation of the global instability of the rotating-disk boundary layer, Procedia IUTAM, 14, 321–328, 2015, https://doi.org/10.1016/j.piutam.2015.03.054.

  28. F. Mendil, F. N. Bouda, D. Sadaoui, Effect of temperature dependent viscosity on the thermal instability of two-dimensional stagnation point flow, Mechanics & Industry, 16, 506, 2015, https://doi.org/10.1051/meca/2015031.

  29. F.N. Bouda, F. Mendil, D. Sadaoui, K. Mansouri, M. Amaouche, Instability of opposing double diffusive convection in 2D boundary layer stagnation point flow, International Journal of Thermal Science, 98, 192–201, 2015, https://doi.org/10.1016/j.ijthermalsci.2015.07.014.

  30. S. Mouloud, F. Nait-Bouda, D. Sadaoui, F. Mendil, The onset of instabilities in mixed convection boundary layer flow over a heated horizontal circular cylinder, Journal of Thermal Science and Engineering Applications, 11, 051002, 2019, https://doi.org/10.1115/1.4042586.

  31. R. Miller, P. Griffiths, Z. Hussain, S.J. GARRETT, On the stability of a heated rotating-disk boundary layer in a temperature-dependent viscosity fluid, Physics of Fluids, 32, 024105, 2020, https://doi.org/10.1063/1.5129220.

  32. D. Mukherjee, B. Sahoo, The effect of slip on the convective instability characteristics of the stagnation point flow over a rough rotating disk, Kyungpook Mathematical Journal, 61, 831–843, 2021, https://doi.org/10.5666/KMJ.2021.61.4.831.

  33. S. Wiesche, C. Helcig, Effect of heating on the stability of the three-dimensional boundary layer flow over a rotating disk, E3S Web of Conferences 345, 02007, 2022, https://doi.org/10.1051/e3sconf/202234502007.

  34. H. Görtler, Dreidimensionale instabilität der abenen Staupunktströmung gegenüber wirbelartigen Strömungen [Two-dimensional instability of the same stall-point string opposite the spinning string], [in:] 50 Jahre Grenzschichtforschung, Vieweg und Sohn, pp. 304–314, 1955, https://doi.org/10.1007/978-3-663-20219-6_30.

  35. G. Hämmerlin, Zur Instabilitäts theorie der ebenen Staupunktströmung [Towards the theory of instability of the equal staunch point strength], in: H. Görtler, W. Tollmein (Eds.), 50 Jahre Grenzschichtforschung, Vieweg und Sohn, pp. 315–327, 1955, https://doi.org/10.1007/978-3-663-20219-6_31.

  36. T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Physics of Fluids, 30, 1, 017101, 2018, https://doi.org/10.1063/1.5009611.

  37. C. Bernardi, Y. Maday, Spectral methods, Handbook of Numerical Analysis, in Techniques of Scientific Computing (Part 2), Elsevier, Vol. 5, pp. 209–485, 1997, https://doi.org/10.1016/S1570-8659(97)80003-8.

  38. M. Heydari, G.B. Loghmani, M.M. Rashidi, S.M. Hosseini, A numerical study for off-centered stagnation flow towards a rotating disc, Propulsion and Power Research, 4, 3, 169–178, 2015, https://doi.org/10.1016/j.jppr.2015.07.004.

  39. S. Sarkar, B. Sahoo, Oblique stagnation flow towards a rotating disc, European Journal of Mechanics – B/Fluids, 85, 82–89, 2021, https://doi.org/10.1016/j.euromechflu.2020.08.009.

  40. K. Hiemenz, Die Grenzschicht an einem in den gleichförmingen Flüssigkeitsstrom eingetauchten graden Kreiszylinder [The boundary layer on a straight circular cylinder immersed in a uniform fluid stream], Dingler Polytechnisches Journal, 326, 321–410, 1911.