Motion of an aerosol sphere in hydrogel medium under thermal gradient

Downloads

Authors

  • S. Nishad Department of Mathematics, National Institute of Technology Raipur, India
  • K.P. Madasu Department of Mathematics, National Institute of Technology Raipur, India

Abstract

In this work the thermophoretic migration of an aerosol sphere embedded in a hydrogel medium has been analytically investigated. The porous medium containing microstructure fluid of a micropolar type can be viewed as a hydrogel medium. The Reynolds and Péclet numbers are considered to be very small. We solve the governing equations of momentum and energy by applying a temperature jump, continuity of heat flux, and hydrodynamic boundary conditions such as viscous slip, thermal creep and thermal stress slip at the particle surface. Analytical expressions for thermophoretic velocity and thermophoretic force are obtained. The influence of the permeability, micropolarity, frictional slip, spin slip, thermal stress slip parameters, and thermal properties of particle and medium on thermophoretic velocity and force are discussed numerically. Our results show that the thermophoretic velocity and force are decreasing functions of micropolarity and microrotation thermal conductivity parameters, while the effect of thermal stress slip is to increase the thermophoretic velocity and force of the particle. The novelty of the research is the micropolarity parameter and permeability that characterizes the micropolar fluid flow through a porous medium. The results are also compared with previously published work. The study is applied to capture ash particles conducting thermophoresis in a porous filter formed by interconnected spherical pores in a hydrogel medium.

Keywords:

thermophoresis, aerosol sphere, porous medium, micropolar fluid

References


  1. S.P. Bakanov, Thermophoresis in gases at small knudsen numbers, Aerosol Science and Technology, 15, 77–92, 1991, https://doi.org/10.1070/PU1992v035n09ABEH002263.

  2. J. Brock, On the theory of thermal forces acting on aerosol particles, Journal of Colloid Science, 17, 768–780, 1962, https://doi.org/10.1016/0095-8522(62)90051-X.

  3. B. Derjaguin, Y.I. Rabinovich, A. Storozhilova, G. Shcherbina, Measurement of the coefficient of thermal slip of gases and the thermophoreses velocity of large-size aerosol particles, Journal of Colloid and Interface Science, 57, 451–461, 1976, https://doi.org/10.1016/0021-9797(76)90224-1.

  4. Y. Ye, D. Pui, B. Liu, S. Opiolka, S. Blumhorst, H. Fissan, Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room, Journal of Aerosol Science, 22, 63–72, 1991, https://doi.org/10.1016/0021-8502(91)90093-W.

  5. M. Williams, S. Loyalka, Aerosol Science: Theory and Practice, Pergamon, 1991.

  6. S.K. Friedlander, Smoke, Dust, and Haze, Oxford University Press, New York, 2000.

  7. A. Sasse, W. Nazaroff, A. Gadgil, Particle filter based on thermophoretic deposition from natural convection flow, Aerosol Science and Technology, 20, 227–238, 1994, https://doi.org/10.1080/02786829408959679.

  8. H.J. Keh, J.H. Chang, Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity, Chemical Engineering Science, 53, 2365–2377, 1998, https://doi.org/10.1016/S0009-2509(98)00066-9.

  9. H.J. Keh, N.Y. Ho, Concentration effects on the thermophoresis of aerosol spheres, Journal of Colloid and Interface Science, 216, 167–178, 1999, https://doi.org/10.1006/jcis.1999.6310.

  10. Y.C. Chang, H.J. Keh, Effects of thermal stress slip on thermophoresis and photophoresis, Journal of Aerosol Science, 50, 1–10, 2012, https://doi.org/10.1016/j.jaerosci.2012.03.006.

  11. T.H. Hsieh, H.J. Keh, Thermophoresis of an aerosol sphere with chemical reactions, Aerosol Science and Technology, 46, 361–368, 2012, https://doi.org/10.1080/02786826.2011.631955.

  12. M.S. Faltas, K.E. Ragab, Thermophoretic and photophoretic velocities and forces of a spherical particle embedded in Brinkman medium, European Physical Journal Plus, 134, 475, 2019, https://doi.org/10.1140/epjp/i2019-12855-y.

  13. M.S. Faltas, K.E. Ragab, Thermophoresis of cylindrical particle immersed in Brinkman fluid, Colloid Journal, 83, 676–687, 2021, https://doi.org/10.1134/S1061933X2106003X.

  14. C.Y. Li, H.J. Keh, Thermophoresis of a particle in a concentric cavity with thermal stress slip, Aerosol Science and Technology, 52, 269–276, 2018, https://doi.org/10.1080/02786826.2017.1398397.

  15. S. El-Sapa, Effect of permeability of Brinkman flow on thermophoresis of a particle in a spherical cavity, European Journal of Mechanics B/Fluids, 79, 315–323, 2020, https://doi.org/10.1016/j.euromechflu.2019.09.017.

  16. C.Y. Li, H.J. Keh, Axisymmetric thermophoresis of an aerosol particle in a spherical cavity, Journal of Aerosol Science, 135, 33–45, 2019, https://doi.org/10.1016/j.jaerosci.2019.05.002.

  17. M.S. Faltas, E.I. Saad, Thermophoresis-Brinkman flow of an aerosol particle within a spherical cavity, Physics of Fluids, 35, 2023, https://doi.org/10.1063/5.0156137.

  18. A.C. Eringen, Microcontinuum Field Theories: II Fluent Media, Springer, New York, 2001.

  19. E.I. Saad, M.S. Faltas,Theory of thermophoresis of a spherical particle embedded in a micropolar fluid, Journal of Molecular Liquids, 282, 527–544, 2019, https://doi.org/10.1016/j.molliq.2019.02.118.

  20. E.I. Saad, M.S. Faltas, Thermophoresis of a spherical particle straddling the interface of a semi-infinite micropolar fluid, Journal of Molecular Liquids, 312, 113289, 2020, https://doi.org/10.1016/j.molliq.2020.113289.

  21. M.S. Faltas, H. Sherief, A.A. Allam, M. Nashwan, M. El-Sayed, Thermophoresis of a spherical particle in a permeable microchannel with thermal stress slip, Physical Review Fluids, 8, 054102, 2023, https://doi.org/10.1103/PhysRevFluids.8.054102.

  22. M.S. Faltas. H. Sherief, A.A. Yousef, Thermocapillarity motion of a droplet within a permeable cavity, Alexandria Journal of Science and Technology, 1, 34–44, 2024, https://doi.org/10.21608/AJST.2024.268598.1029.

  23. S. Jaiswal, P.K. Yadav, Analysis on Couette flow of a micropolar fluid through a circular annulus filled with the porous medium, Microfluidics and Nanofluidics, 26, 2024, https://doi.org/10.1007/S10404-022-02601-8.

  24. A. Kumar, P.K. Yadav, Heat and mass transfer in peristaltic flow of MHD non-miscible micropolar and Newtonian fluid through a porous saturated asymmetric channel, Waves in Random and Complex Media, 2023, https://doi.org/10.1080/17455030.2023.2252946.

  25. P.K. Yadav, N. Yadav, Magnetohydrodynamic study of micropolar fluid flow in the porous walled channel with variable viscosity and thermal conductivity: HAM solution, Chaos, Solitons & Fractals, 181, 114726, 2024, https://doi.org/10.1016/j.chaos.2024.114726.

  26. P.K. Yadav, N. Yadav, Impact of heat and mass transfer on the magnetohydrodynamic two-phase flow of couple stress fluid through a porous walled curved channel using Homotopy Analysis Method, Chaos, Solitons & Fractals, 183, 114961, 2024, https://doi.org/10.1016/j.chaos.2024.114961.

  27. M.J. Willemsen, T. André, R. Wanner, H.M. Rotha, S. Duhra, P. Baaske, D. Breitsprecher, MicroScale thermophoresis: interaction analysis and beyond, Journal of Molecular Structure, 1077, 101–113, 2014, https://doi.org/10.1016/j.molstruc.2014.03.00.

  28. M.K. Prasad, T. Bucha, Magnetohydrodynamic effect on axisymmetric Stokes flow past a weakly permeable spheroid with a solid core, Archives of Mechanics, 73, 599–633, 2021, https://doi.org/10.24423/aom.3857.

  29. A. Kumar, P.K. Yadav, Heat andmasstransfer analysis of non-miscible couple stress and micropolar fluids flow through a porous saturated channel, ZAMM–Journal of Applied Mathematics and Mechanics, 104, e202300635, 2024, https://doi.org/10.1002/zamm.202300635.

  30. D.A. Nield, A. Bejan, Convection in Porous Media, Springer, New York, 2006.

  31. M.T. Kamel, D. Roach, M.H. Hamdan, On the micropolar fluid flow through porous media, Proceedings of the 11th WSEAS International Conference on Mathematical Methods, Computational Techniques and Inteligent Systems, 190–197, 2009.

  32. D.Y. Khanukaeva, A.N. Filippov, Isothermal flows of micropolar liquids: Formulation of problems and analytical solutions, Colloid Journal, 80, 17–40, 2018, https://doi.org/10.1134/S61933X18010040.

  33. M.K. Prasad, D. Srinivasacharya, Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium, International Journal of Fluid Mechanics Research, 44, 2017, https://doi.org/10.1615/InterJFluidMechRes.2017015283.

  34. J.J. Shu, J.B.M. Teo, W.K. Chan, Fluid velocity slip and temperature jump at a solid Surface, Applied Mechanics Reviews, 69, 2, 020801, 2017, https://doi.org/10.1115/1.4036191.

  35. R.P. Khandelwal, A. Chakrabarti, B.K. Mishra, P. Bhargava, A new heat flux continuity model for thermal analysis of laminated plates, Journal of Composite Materials, 47, 2053–2059, 2012, https://doi.org/10.1177/0021998312446184.

  36. E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York and London, 1938.

  37. L. Talbot, R.K. Cheng, R.W. Schefer, D.R. Willis, Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, 101, 737–758, 1980, https://doi.org/10.1017/S0022112080001905.