Analytical solution of peridynamics for heat conduction with an external source

Downloads

Authors

  • S. Fan School of Mechanics and Construction Engineering, Key Laboratory of Green Toughening and Safety Prevention and Control of Offshore Structures, Jinan University, China
  • H. Liu Department of Engineering Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, China
  • X. Peng Department of Engineering Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, China

Abstract

This study provides a novel analytical approach for solving one- and two-dimensional heat conduction problems with an external heat source within the peridynamic framework. By employing Duhamel’s principle, the inhomogeneous governing equation with an external source is transformed into a homogeneous equation, enabling the derivation of peridynamic analytical solutions through separation of variables. An innovation involves introducing a nonlocal factor by ensuring compatibility between the spatial functions in the peridynamic solution and their classical continuum mechanics counterparts. Numerical examples demonstrate the methodology’s effectiveness for both one- and two-dimensional heat conduction problems subjected to sinusoidal and constant external sources, and the nonlocal effect is measured based on the nonlocal factor. Unlike peridynamic systems without external sources, these examples reveal that the nonlocal factor appears not only in the exponential term but also in other components of the solution, indicating persistent nonlocal effects even as time approaches infinity. Furthermore, the analysis shows that the kernel function with n = 0 exhibits the strongest nonlocal influence, while n = 2 results in the weakest nonlocal behavior. The findings demonstrate that peridynamic analytical solutions for heat conduction can be systematically derived from classical continuum mechanics solutions through appropriate incorporation of the nonlocal factor. This work significantly expands the scope of peridynamic analytical solutions and offers new insights into nonlocal heat conduction phenomena, providing a valuable foundation for future studies in this field.

Keywords:

peridynamics, heat conduction, analytical solution, nonlocal effect

References


  1. E. Kröner, Elasticity theory of materials with long range cohesive forces, International Journal of Solids and Structures, 3, 731–742, 1967, https://doi.org/10.1016/0020-7683(67)90049-2.

  2. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10, 425–435, 1972, https://doi.org/10.1016/0020-7225(72)90050-X.

  3. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, International Journal of Engineering Science, 10, 233–248, 1972, https://doi.org/10.1016/0020-7225(72)90039-0.

  4. I.A. Kunin, Inhomogeneous elastic medium with nonlocal interaction, Journal of Applied Mechanics and Technical Physics, 8, 41–44, 1967, https://doi.org/10.1007/BF00913207.

  5. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48, 175–209, 2000, https://doi.org/10.1016/S0022-5096(99)00029-0.

  6. O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, Journal of the Mechanics and Physics of Solids, 53, 705–728, 2005, https://doi.org/10.1016/j.jmps.2004.08.006.

  7. J.M. Zhang, M. Yu, X.H. Chu, Coupled hygro-thermo-mechanical peridynamic model for concrete fracture analysis at high temperature, Computational Particle Mechanics, 11, 1661–1680, 2023, https://doi.org/10.1007/s40571-023-00695-7.

  8. Z.B. Li, F. Han, Adaptive coupling of non-ordinary state-based peridynamics and classical continuum mechanics for fracture analysis, Computer Methods in Applied Mechanics and Engineering, 420, 116691, 2024, https://doi.org/10.1016/j.cma.2023.116691.

  9. K. Feng, X.P. Zhou, Peridynamic simulation of the mechanical responses and fracturing behaviors of granite subjected to uniaxial compression based on CT heterogeneous data, Engineering with Computers, 39, 307–329, 2023, https://doi.org/10.1007/s00366-021-01549-7.

  10. X. Gu, X. Li, X.Z. Xia, E. Madenci, Q. Zhang, A robust peridynamic computational framework for predicting mechanical properties of porous quasi-brittle materials, Composite Structures, 303, 116245, 2023, https://doi.org/10.1016/j.compstruct.2022.116245.

  11. M. Yu, Z.Y. Zhou, Z.X. Huang, Traction-associated peridynamic motion equation and its verification in the plane stress and fracture problems, Materials, 16, 2252, 2023, https://doi.org/10.3390/ma16062252.

  12. J. Zhang, Y.X. Liu, X. Lat, L.S. Liu, H. Met, X. Liu, A modified bond-associated non-ordinary state-based peridynamic model for impact problems of quasi-brittle materials, Materials, 16, 4050, 2023, https://doi.org/10.3390/ma16114050.

  13. B.F. Chu, Q.W. Liu, L.S. Liu, X. Lat, H. Mei, A rate-dependent peridynamic model for the dynamic behavior of ceramic materials, Computer Modeling in Engineering & Sciences, 124, 151–178, 2020, https://doi.org/10.32604/cmes.2020.010115.

  14. L.W. Wu, D. Huang, Peridynamic modeling and simulations on concrete dynamic failure and penetration subjected to impact loadings, Engineering Fracture Mechanics, 259, 108135, 2022, https://doi.org/10.1016/j.engfracmech.2021.108135.

  15. S. Jafarzadeh, J.M. Zhao, M. Shakouri, F. Bobaru, A peridynamic model for crevice corrosion damage, Electrochimica Acta, 401, 139512, 2022, https://doi.org/10.1016/j.electacta.2021.139512.

  16. Z.G. Chen, S. Jafarzadeh, J.M. Zhao, F. Bobaru, A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking, Journal of the Mechanics and Physics of Solids, 146, 104203, 2021, https://doi.org/10.1016/j.jmps.2020.104203.

  17. Z.G. Chen, F. Bobaru, Peridynamic modeling of pitting corrosion damage, Journal of the Mechanics and Physics of Solids, 78, 352–381, 2015, https://doi.org/10.1016/j.jmps.2015.02.015.

  18. J.M. Zhao, S. Jafarzadeh, M. Rahmani, Z.G. Chen, Y.R. Kim, F. Bobaru, A peridynamic model for galvanic corrosion and fracture, Electrochimica Acta, 391, 138968, 2021, https://doi.org/10.1016/j.electacta.2021.138968.

  19. S.Q. Fan, C.W. Tian, Y.P. Liu, Z.G. Chen, Surface stability in stress-assisted corrosion: a peridynamic investigation, Electrochimica Acta, 423, 140570, 2022, https://doi.org/10.1016/j.electacta.2022.140570.

  20. C.W. Tian, J. Du, S.Q. Fan, Z.G. Chen, A general electrochemical peridynamic model for corrosion and electrodeposition, Journal of Electroanalytical Chemistry, 968, 118512, 2024, https://doi.org/10.1016/j.jelechem.2024.118512.

  21. H. Wang, H. Dong, Z.W. Cat, Y.Z. Liu, W.Z. Wang, Fatigue behaviors of a nickel-based superalloy after hot-corrosion: Experiments and peridynamic simulations, International Journal of Fatigue, 180, 108070, 2024, https://doi.org/10.1016/j.ijfatigue.2023.108070.

  22. D.J. Bang, A. Ince, E. Oterkus, S. Oterkus, Crack growth modeling and simulation of a peridynamic fatigue model based on numerical and analytical solution approaches, Theoretical and Applied Fracture Mechanics, 114, 103026, 2021, https://doi.org/10.1016/j.tafmec.2021.103026.

  23. O. Karpenko, S. Oterkus, E. Oterkus, Titanium alloy corrosion fatigue crack growth rates prediction: Peridynamics based numerical approach, International Journal of Fatigue, 162, 107023, 2022, https://doi.org/10.1016/j.ijfatigue.2022.107023.

  24. H. Wang, H. Dong, Z.W. Cat, Y.Z. Liu, W.Z. Wang, Corrosion fatigue crack growth in stainless steels: A peridynamic study, International Journal of Mechanical Sciences, 254, 108445, 2023, https://doi.org/10.1016/j.ijmecsci.2023.108445.

  25. Z.X. Huang, Revisiting the peridynamic motion equation due to characterization of boundary conditions, Acta Mechanica Sinica, 35, 972–980, 2019, https://doi.org/10.1007/s10409-019-00860-3.

  26. E. Emmrich, O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity, Communications in Mathematical Sciences, 5, 851–864, 2007.

  27. S.A. Silling, R.B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93, 13–37, 2008, https://doi.org/10.1007/s10659-008-9163-3.

  28. S.A. Silling, M. Zimmermann, R. Abeyaratne, Deformation of a peridynamic bar, Journal of Elasticity, 73, 173–190, 2003, https://doi.org/10.1023/B:ELAS.0000029931.03844.4f.

  29. O. Weckner, G. Brunk, M.A. Epton, S.A. Silling, E. Askari, Green’s functions in non-local three-dimensional linear elasticity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465, 3463–3487, 2009, https://doi.org/10.1098/rspa.2009.0234.

  30. Y. Mikata, Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod, International Journal of Solids and Structures, 49, 2887–2897, 2012, https://doi.org/10.1016/j.ijsolstr.2012.02.012.

  31. L.J. Wang, J.F. Xu, J.X. Wang, Static and dynamic Green’s functions in peridynamics, Journal of Elasticity, 126, 95–125, 2017, https://doi.org/10.1007/s10659-016-9583-4.

  32. Z.X. Huang, The singularity in the state-based peridynamic solution of uniaxial tension, Theoretical and Applied Mechanics Letters, 8, 351–354, 2018, https://doi.org/10.1016/j.taml.2018.05.008.

  33. J.K. Chen, Y. Tian, X.Z. Cui, Free and forced vibration analysis of peridynamic finite bar, International Journal of Applied Mechanics, 10, 1850003, 2018, https://doi.org/10.1142/S1758825118500035.

  34. X.H. Peng, Z.K. Zhou, H.J. Liu, Z.G. Chen, Evaluating the effects of nonlocality and numerical discretization in peridynamic solutions for quasi-static elasticity and fracture, Communications in Nonlinear Science and Numerical Simulation, 140, 108343, 2025, https://doi.org/10.1016/j.cnsns.2024.108343.

  35. Z.G. Chen, X.H. Peng, S. Jafarzadeh, F. Bobaru, Analytical solutions of peridynamic equations. Part I: transient heat diffusion, Journal of Peridynamics and Nonlocal Modeling, 4, 303–335, 2022, https://doi.org/10.1007/s42102-022-00080-7.

  36. Y.C. Zhu, Equations and Analytical Tools in Mathematical Physics, Springer, 2021.

  37. K.M. Liang, F. Liu, G.Q. Miao, Mathematical Methods for Physics, 4th ed., Higher Education Press, 2010.